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INTRODUCTION

1. This volume is mainly concerned with the Nevanlinna factori-
zation in classes of functions analytic in the unit discD and smooth
in a sense up to the boundary ED (in what follows we call such fun-
ctions smooth analytic functions due to the smoothness of their boun-
dary values). Different kinds of factorizations (i.e. roughly speaking
methods of decomposition of a function into the "simplest" factors)
played an important role in complex analysis from the very beginning
of its existence and even now continue to be a keystone of that branch
of mathematics. The Weierstrass products in the theory of entire func-
tions, the Blaschke products, the inner and outer functions form nowa~

days an essential part of the analytic machinery . The last three
decades have provided new inventions in that field - we would like
mention only a long series of papers by M.M.Dzhrbashian [40] , a new
factorization of entire functions introduced by Rubel [42] , and the
Horowitz  products [43] . Interest in the different kinds of factori-
zations is stimulated by urgent problems of Complex analysis and first
of all by the problems of uniqueness and of the distribution of wvalues,
which form the core of the subject.

Factorizations as a tool are widely used in the gtudv of ideals in
Banach algebras of analytic functions, in problems of spectral analy-
sis and synthesis; their vector-and operatorwvalued analodJues play a
notable role in the modern spectral operator theory.

In the present volume we deal with the least known and most fre-
quently used factorization, namely with the Nevanlinna factorization
or, in modern terms, the inner outer factorization. Developed by
R.Nevanlinna, G.Szegd and V.I.Smirnov, the factorization was intensi-

vely studied already in the 1920-s and 1930-s. Nevertheless the develo-



prment of methematics during the last few decades has revealed an essen-
tially new phenomenon which roughly speaking consists in the fact that
the Nevanlinna factorization fits well not only to classes similar to
the Hardy classes but also to classes of smooth analytic functions.
Let us recall some classical facts and notation (see [44] , [45]
for details).
2. A function I analytic and bounded in ]D is called an inner
function if M II(*Lz;)f=1 almost everywhere on 9]) . Two important
e
examples of inneii functions are the following:
a) Let {,{,K} be a sequence (perhaps finite) of points of ]D\{O}

satisfying

%{(4~l=u,(l)<oo.

Then the ovroduct

-~ e

x:Z
A=dg

™N

Ay
B=11 1 4

converges in ]D to an inner function vanishing at the OLK’S and only
at them. Then the function Z™B , where meZ+ , is called a
Blaschke product.
b) Let/w be a nonnegative Borel measure on the circle 9B which is
singular with respect to Lebesgue measure on Q_D . The function
9
5ﬂ<W=f’/xP(—{ggﬂde) vel (0)
-4

is an inner function. It does not vanish in ]D and is called the sin-
gular inner function corresponding to the measure M-
These two examples are the basic ones because any inner function

may be uniquely factored into the product

I=cBS (1)



where (C € QJD ’ B is a Blaschke product and S is a singular func-
tion.

In what follows it is important to notice that as a rule I does

not possess any smoothness on the circle 8D . In case I is conti-
nuous in ]D we have SE‘I and B is a finite Blaschke product.
1
c) Outer functions. Let 80?”1«] €L (QID) . We can associate with
h/ an analytic function eh’ in D (which is called the outer
function corresponding the function lh,l ) as follows
i 00
4 0
1 \e +% b )40 D
)= A Iog e gel.
eh,( ) m(?,ﬁi ;{9_—(’7' [nie )| ’
-5
The function ek, does not vanish in ]D and

b l=fim. Ioh (15| = his)l

for almost all ZEG]D

d) Class N . A function { analytic in ]D is said to belong to
the Nevanlinna class N if
in
+ i0
P S&y@ 1{(ve*™)|d6 < 0.
0<™ <A
0

That class plays a very important role in analysis. Classes of analy-
tic functions most frequently used in harmonic analysis and operator-
theory are usually contained in N.

The following result is the starting point of the Nevanlinna's
factorization theory.

THEOREM. Let B be a Blaschke product, S/u, be a singular fun-
ction corresponding to a real Borel measure fb and eh' be an outer

4
function corresponding to the function h, such that Loglkle L, .



Then

£=CBS.’“€I’I/€N (2)

Conversely, an arbitrary function {e N can be uniquely represented

in the form (2). In what follows we write down the product in (2) as
£=e¥'I{

where I{=CBS , 84):6’1/'
The importance of the Nevanlinna factorization is that it provides
a complete description of the class as well as its crucial subclas-

ses in terms of "pure real" parameters determining the factors I{

and 6{ (these are the constant c({) € 9]D , the real measure
Nad =/“/({) ) , the sequence {J,K} and the number m and finally
the values |¢¥| on 9]D ) . The subclasses mentioned above are the

P
Hardy classes H and the Smirnov class { . We recall [44] that
210

HP={'{€N:W Sl{wew)lpd,e <oo}, 0<p< oo,

0<4<1
0

Hm={'feN: 5;64)"{“00},

2 a0
_ 2 + 4/6 5 + (6
D={feN: fim %&xg [{(e )Id,9=S&m log™ 14 (ve*")|d 6}.
v+4-0 Yv=1-0
0 0
! "
It can easily be cheked that HP c HP cd , if M}F’)P”> 0.
An alternative description of @ is the following: a function be-

longs to D iff the singular measure jh(i) is nonnegative. Thus

the Hardy classes can be characterized as follows:

HP={4eN: uihyr0, flopet (3D},



3. Let us now dwell on some details connected with the formula (2)
which are especially important for our paper.

I. We say that an inner function Ig, divides an inner function 14

if I1/12 (=3 Hw . The above references yield that if ¥eﬁo and
if an inner function I divides I£ then {I_”e fO . Similarly
if {6 HP and I divides I¥ then {Iﬁle HP . Roughly speaking
the function {Iz is obtained from '{ by "removing the zeros" of
{ . As a matter of fact the function '{1-4 does not vanish in }D ¢
since {B? has no zeros in D and removing of {/4 means (in a
sense) an.isolation of the "boundary zeros" of { . The outer factor

{ behaves in Approximation Theory and Theory of Invariant Subspaces
in many respects as invertible. Thus 50 and HP are invariant with
respect to the "isolation of zeros".
I . Nevanlinna's theorem contains the complete information about
moduli of functions from N or HP on a]D
For example, let H be a nonnegative function on 9@ . Then the

following statements are equivalent:

@ fogheL'(3D)
(B) there exists an {GN, {géo such that
l¥<€>l=% Oli(wz)l=h(:> a.e. 5e0D (3)
N —

We also have the equivalent statements (at,P) and (-PP)

4p) foghGL'AD), helfaD)

(PP) there exist an /fe HP, «f—#: 0 such that (3) holds.
The inclusion ke LP( G]D) implies &}?,‘L df <o , hence
3

the statement (OLP) may be rewritten in the form

wp) | doghdb>-co, hel’(3D).
)



Therefore the equivalence of (¢$) and (ﬁP) yields a uniqueness

theorem useful in applications,

feHf, (logidido=-o = §=¢ (@)
9D

II. Nevanlinna's theorem also contains a full description of the
zero-sets of functions N : if {‘LK} is a countable set in I)
then the following are equivalent:

(Y) there exists a function {#50, fe N , such that {-ZOF{‘*K}

() X U-ldy )<

IV. Nevanlinna's factorization is multiplicative:
e({%)‘_‘e'f'eg, I{?=I¥I?

These relations form an analytic basis of many important theorems con-
cerning the structure of ideals or invariant subspaces in some spaces
of analytic functions. A well-known (but not the only one) example is
given by the famaous Beurling theorem on the shift operator ¥ Fﬂ’Z{
on H%.
4. We are now able to state (in a general form) four problems which
are treated in the present notes.
I. What are the classes X cd which are invariant with respect
to the "isclation of the zeros" ?
I . What are the moduli I{lgm of a given class /XC ﬁ' ?
IOI. What are the zero sets of functions of a given class X ?
IV. What is the structure of closed ideals X if X is a Banach
algebra (or what is the structure of shift invariant subspaces if X
is a Banach space) ?
We postpone a detailed discussion and now only stress that we are
going to study usual smooth analytic functions.

DEFINITION. Following V.P.Havin [4] we say that a class Xc D



possesses the (53 -property if for any {EX and for any inner
function I dividing Ig the function ¥1-4 belongs to X .

We have already seen that HP and i) possess the (@) -proper-
ty. That is a simple consequence of the factorization theorem. Because

*/I ed and l{/Il/gD =|¥|3D a.e. and the classes HP are
defined only in terms of |'¥|,‘)D . But the statﬁ?ent that the disc-
algebra CA e, {e@ ({ is continuous in ]) )possesses the

(9} -property is deeper (this result was first stated by W.Rudin

[5] in connection with his investigation of closed ideals in CA ) .
The disc-algebra CA in contradiction to HP and Q contains in-
ner functions only as exception. Hence the (ﬁB -property in CA is
due to specific interference of outer and inner factors.

Much deeper than in CA is an unexpected result of

L.Carleson [3] , who has discovered the (§3 -property in the class
w? ={{eﬁ)'gglf' L+ [Q’dxd <oo}
1A LT (Er) g <]

Moreover L.Carleson has succeeded in describing all of the parameters

. . ) . %
jﬂ{),{*K}, ]{,em of the factorization (2). Functions in W4A
(analytic functions with finite Dirichlet integral) have appropriate
smoothness on QD and that numbers the investigation of the inter-
play of outer and inner factors.

2
B.I.Korenblum [6] , [7] has shown that the classes Hn,=

={{: ¥(n)e Hz} possess the (F)—property. Such functions are already
really smooth wup to the boundary. Using a development of the method

of [6] , [7] . v.p.Havin [4] has proved the same in the classes

HZ={'{€HP:¥(MEHP}, Wy, 1<p<oo

and

AN =4 M e N}



N ={{: -4l C,le—L’,l’L, z,5eD}, 0<d<i.

n+el
/\ and

Independently and at the some time the (F)—property for
some other classes was stated by F.A. Shamoyan.

The method mentioned above in some situations permits one to avoid
an ingenious analysis of outer and inner factors. The main ideas are
the following.

We define a Toeplitz operator TE/

(T {)(f - S ——5—“(_)*(;) dy, 4eX, ae H.
Ty 204 ) 5T
()

If we suppose that
o0
T, XX for any a e H (5)

then X possesses the (g-) -property. Indeed, if a=1 ’ I is an
inner function, I divides I¥ then T—i£ = { 1-4 by the Cauchy for-
mula. Following V.P.Havin [4] we call the property (5) of a class x
the (Ky -property. 1n [6a] , (7] , [4] , [41] the (ﬂ') -property
follows from the (K) -property of the corresponding class. The same
implication was obtained in [39] by E.M.Dyn'kin in a different way.
J.P.Kahane [46] has applied the best polynomial appronimation and has
obtained the (F)-property in /\d’, 0<a< 1.

Taking in consideration all these results it may look quite natu-
ral that all "natural" classes possess the (.‘I) -property.

However, it turned out that the most natural class
w_ . f ()
CA {¥ECA"¥ E-CA)}
is the most difficult one for the proof of the (F)—property.
It is not hard to prove that these classes do not possess the
(K) -property.So it seems that the proof of the (F) -property must

rest on a careful analysis of I¥ and e'{

The first paper, in which the (g.) -property was studied directly



(without use of Toeplitz operators) was that by S.A.Vinogradov and the
author [49] (excluding the pioneer work of L.Carleson [3] where stu-
dying of the (F) -property was not the main purpose). It was shown in

[49] that the space
1_ gl 1
H4—{'¥ECA.¥ e H _}

possesses the (F) -property and the space

HY={4eCy: e}

n 0 L pn)
"almost possesses" the (F) -property. For CA and Hn—{'{{ <
€ Hw} the problem discussed was solved by the author [51] , [53]
with the help of a new method which permitted one to study in detail
the rate of vanishing of I‘{| in the vicinity of the critical set
-4 _ .
spec I =B (O)UW’P'PJ"’M I-—BS, I adivides I¥ . In the
present volume we apply that method to classes of analytic functions
with "varying boundary smoothness” (Ch. 1). The main result of § 1 is
the following.
n ; . . v .
The class /\w(CP) is a natural generalization of /\ and is

w
defined as follows:

Ao (9 ={feCy: [{ M@~ M5l <

scww(!¢((4-'i;i')2)|- z-51), #%eD}.

¢ is an outer function in D such that llCPua]D € A4 7 A4 is the
Mucken houpt class, i.e. the class of nonnegative weights which for

any are I C QD satisfy

g|¢|sc|I|mM|¢|.
7 I

THEOREM 1. Let nf>/0, w be an arbitrary modulus of continuity
w
and I¢|3]D EA4 . Then the class Aw(q)) possesses the (F) -proper-

ty.



10

It is natural to ask whether the multiplication of a function by
its own inner factor retains the function in the considered class of
smooth analytic functions as the division does.

If *e HP and I is an inner function then obviously
{IeHP . If '¥€CA , then {I in general does not belong to CA
but if we know in addition that I divides I{ then it is not diffi-
cult to check that {I ECA . The latter means the following. If
I is an inner function then the conditions ¥/I GCA and {IECA
are equivalent. However this situation does not occur in classes of

smooth analytic functions what is shown by Theorems z and 3.

n
THEOREM 2. Let {e /\w(CP), ¢ be as in Theorem 1, [ be an
inner function, {/I €CA . Suppose that the multiplicity of the ze-
ros of { at the points d € specl nD is at least N +1

Then {I e /\:;(CP)

THEOREM 3. For any modulus of continuity @ there exists a fun-
ction ¥e Am, Am =n;§4 CZ and a Blaschke product B such that
{/Beh®, 4B¢g A,

In spite of the abundance of examples of spaces of analytic fun-
ctions with (S() -property, this property is not universal.

The first example of a space without (ff) -property was pointed
out by V.P.Gyrarii [9] , who proved that the (J:_r) -property is Vio-

lated in

f={feCh: 3 i<l

Later other examples were discovered:
P

P ={{eCy: 2 If(ml'<w

A { A nzo{ }

(for PEH’AS) see [50] and for Pe[%,Z] see [10] ),

B,={{eH”: '@ l=0 -1z ).



1

(J.M.Anderson [11] ).

In § 3 of Ch. 1 we exhibit new examples of classes without (% -
property.

THEOREM 4. Let {8H«} be any sequence satisfying {g 6mé e n,cfb.

Then the class

{{eH‘:goﬁmlfmﬂPM}

does not possess the (?) -property for PEH,OO] y Pﬁéz-

I . Boundary values of the moduli of smooth analytic functions. Sup-
pose first that the boundary values of a function ¥6£0 have some
smoothness (for example {e pr 4 ) . What then can be said about
H?IIED ? It is clear that {0?[4[ must be summable on 'a]D and
that |’f“3m€ LLPcL 0gd <A . That is the only thing which is
seen at the first glance But there exist much deeper observations.

In [1 2] V.P.Havin and F.A.Shamoyan proved that for a nonnegative fun-

; 1
ction h«, h«eLbPoL, 0<o{,<'f, Eog heL (GD) , the outer function
d,
:{ with (4"8D=h' satisfies {e/\ /2 . This result cannot be
improved. There is a function heLLpaL such that for the correspond-

ing outer function 4{ we have ¥€/\d’/2+6 for every &>0 (it is men-
tigned in ([13] that a close result is contained in an unpublished
paper by Jacobs). Later the theorem mentioned was generalized by V.P.
Havin [13] to the class Lipw for an arbitrary @ . The results
of [12] and [13] pointed out that the boundary smoothness of an outer
function must be half that of its modulus, whatever the un-
derstanding of the word "smoothness". In connection with his research
in Approximation Theory J.Brennan [14] was forced to prove the theo-
rem discussed for h«e LLP&, 0<a4<K? . It is also worth mention-

. d,
ing that the implication he pr&@eh« €N 4

for any 4>0 was
used without proof as a crucial tool in papers by Taylor and Williams

[15] and by Bruna and Ortega [47] . These authors referred to an un-
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published paper by Carleson and Jacobs.

On the other hand in [51] a necessary and sufficient condition for
the inclusion eh,e /\& was found under assumption h/G LLP& . However,
the form that condition was stated was not convenient for further ge-
neralizations.

In Ch. 2 we state a general result in that direction which concerns
the scales Ad’ , &4 1is not integer, Hr':«’ ’1<P< 0, Wy»4 and /\yHZ ,

Z is Zygmund class. Theorems 5, 6 and 7 correspond the classes cit-
ed. There is one idea of the description which can be realized in dif-
ferent ways depending of the situation. We shall use the common no-

tation

U= {45 e e ),

L&P& for 4 not integer and

i z={: (&) e eZ oDy},

We also introduce a specific notation: for a continuous function

we put
Mh(zr lh(g)], zeD, |z|» iz
l%-mls{ 2]
Now we present a generalized statement of Theorems 5 - 7.
Let X be Ai} Hi or Anﬂz- and Y be respectively LLP&,
Li or Cw'4Z . We put
(- 1z e X=p
HX 9m)=¢ (1-1z))" e X=\"'z

g () -1z ie X=HP,
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(We emphasize that H()(,q),z) really depends on (') only in the
case X=Hi )
a) Suppose that {ex, ¥$ 0 . For the suitable choice of (P we

have the inequality

et 55 e

which holds at every point Zel]) \{0} such that
M{(Z)zH(X,q),z) (7)
( C does not depend on Z )
b) Suppose that {6 Y and suppose that (6) holds with suitable
choice of (P at any point ZE]D\{ O} satisfying (7). Thene{ex
The boundedness of the integral (6) turns out to be quite a use-
ful tool which permits one to investigate the behaviour of an analy-

tic function rather carefully. Some corollaries of Theorems 5 - 7 are

collected in Theorem 8.

THEOREM 8. Let Slﬂgmd9>-w . Then
D
¥€L4&P&=>e¥e/\&/2 (8)
felf,, 1¢pewo = f e HE (9)

¥4'¥26A‘Ls 0<a<d, h('é)=|¥1(?§)|+"£g(li)|%‘*eh€/\d'.

The implication (8) strengthens the Carleson-Jacobs result cited

by Taylor, Williams, Bruna and Orteya because we do not demamd that

'{ be nonnegative (in our case '£ can be a complex valued function :

F.A,Shamoyan [48] has proved the implication (9) for 477/0 . Both
(8) and (9) are § -strict in the natural sense.

II. Local and global properties of zero-sets of smooth analytic



