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PREFACE

The present notes are devoted to a reasonably
exhaustive discussion of the basic qualitative prob-
lem of algebraic invariant theory, viz., given a
ring R and a group G of automorphisms of R,
to describe the ring of G-invariant elements of R.
In particular, if R 1is a finitely generated comm-
utative algebra over the field k and each element
of G 1leaves the elements of k fixed, then is
the ring of invariants also a finitely generated
algebra over k? This is essentially the famous
fourteenth problem of Hilbert. We shall not con-
cern ourselves with the quantitative aspects of the
problem, e.g., given generators and relations for
R, to obtain the same for the ring of invariants.

Why should one be interested in such a problem,
aside from its intrinsic simplicity and natural
appeal? One reason is that it is closely related
to what might be called the classificatipn problem.
This can be stated in very general terms as follows.
Given a collection of mathematical objects of a
certain type, and a well defined nbtion of 'equi-
valence' or 'isomorphism' between these objects,
can one find a natural mathematical structure for

the set of isomorphism classes of objects of the

ix



b4 PREFACE

given type?
Let us look quickly at one example. By an al-

gebra over the field k we mean a vector space A
over k, plus a bilinear mapping M : A x A —> A,
Suppdse we seek to classify all algebras of @imeﬁ—
‘sion d over k, up to isomorphism. Clearly we
may fix the underlying vector space A. Then the
set of all algebra structures on A is simply the
vector space of all k-bilinear maps from A x A to
A'. Two such structures M' and M" are isomorph-
ic if and only if there is a k-linear isomorphism
T : A =>» A such that M'(Tx,Ty) = T(M"(x,y)), for
all x,y € A.

If ﬁ denotes the space of bilinear maps from
A XA to A and. GL(A) the group of k-linear
automorphisms of A, then GL(A) acts by linear
transformations on B via: MT(x,y) = M(Tx,Ty),
T € GL(A), M€ B. The isomorphism classes of such
structures are then in bijective correspondence
with the orbits of this action of GL(A) on B.
The problem now becomes one of finding a 'reason-
able' structure for the set of orbits.

If R‘ is the ring of polynomial functions on
B - the symmetric algebra of B* - then the ele-
menis of R invariant under the inducea action of
GL{(A) on R can be regarded as functions on the
set of orbits. The problem of invariants and the

orbit space problem are thus intimately related.
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The first chapter is a utilitarian introduction
to affine algebraic geometry over an algebraically
closed fieid. Because we confine ourselves to af-
fine geometry, we must leaVe aside the relation of
invariant theory to projective geometry. 1In any
case, the latter theory deserves a volume to itself.

The second chapter is more detailed, vis;a—vis
1ts subject matter - affine algebraic groups - than
the first. We obtain some fairly deep general re-
sults on these groups, e.g., we construct the quot-
ient of an affine group by a closed normal subgroup.
This quotient turns out to be itself an affine group
- a hiphly non-trivial result requiring invariantive
methods for its proof.

In the foregoing chapters our methods are strict-
ly 'global’', i.e., we deal with whole 'varieties'
at a time. However, 'infinitesimal' methods are
often more powerful than global ones, and it is in
the third chapter that we iﬁtroduce them. The idea
behind these methods is very simple, and comes down
in our case to this. Suppose that the base field
is the complex numbers and that a 'continuous'
group G' operates on a vector space by linear
transformations. If a vector v &€ V is invariant

under this action, then the assertion

5o (gv) =0, g € G,
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is extraordinarily suggestive. The problem is to
make it precise. Making use of the algebraic ver-
sion of derivatives, we show that there is a natural
way to attach to each affine group a finite dimen-
sional algebra - called the Lie algebra of the group
- which in the arcane language of the nineteenth
century is very aptly described as the group of
‘infinitesimal transformations' of the given group.
Wpenever the group acts on a vector space by linear
transformations, so does its Lie algebra. Since
the Lie algebralis a 'linear' object, whereas the
group itself almost always is not, the use of the
Lie algebré to analyze the given action eases the
task immeasurably. There is, however, one flaw in
this seemingly ideal éituation. It goes completely
awry in positive charaéteristics. This is perhaps
the major reason why invariant theory over modular
fields is almost completely uncharted territory.

The fourth chapter digresses to develop the
Cartan-Weyl representation thebry of Lie algebras
in characteristic zero. This is the technical
grouuﬂwork upon which the invariant theory in char-
acgeristic zero is laid. We include a conclgsive
set of counterexamples to the Cartan-Weyl theory
in charac¢teristic p.

In the final chapter, we reap the fruits of
our efforts. We give a complete solutior. of the

Hilbert fourteenth problem for semisimple groups
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in characteristic zero - due to Weyl - and a com-
plete solution of the orbit space problem for such
groups - due to Mumford.

After this, we&turn to a more detailed study
of the structure of affine groups, enabling us to
put our invariantive results in more definitive form.
Next we prove some recent results of Nagata and
Seshadri on so-called 'semi-reductive' groups -

a concept which affords the only general method
now available for invariant theory in positive
characteristics. We conclude with some results of
Weitzenbock and Fischer which, from the viewpoint
of the theory as developed today, appear rather
isolated, but which may conceal general techniques.

A number of exercises are scattered throughout
the text and some supplementary ones are given at
the end of the book, but I have made no effort to
give full coverage in this respect. Since no fam-
iliarity with algebraic geometry is assumed, I have
ingluded proofs of all the technical algebraic re-
sults needed in the course cf the development.

I have, of course, borrowed heavily from-many
writers in preparing this material. In.particular,
I have relied upon Serre's "Lie Algebras and Lie
Groups" (Benjamin 1965), Nagata's "Lectures on the
Fourteenth Problem af Hilbert" (Tata Institute,
1965) and Mumford's "Geometric Invariant Theory"

(Springer, 1965)
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D. S. Rim has kindly made available to me his
unpublished lecture notes on Lie algebras and I am
indebted to him for many of the examples that appear
here. I should>also acknowledge what I have been
taught by S.Sternberg, and, above all, by 0. Zariski.

The text itself is an elaboration on lecture
notes that were prepared for a course in modern in-
variant theory at the University of Pennsylvania
in the spring of %968. I owe much to the patient
criticism of the students who attended those
lectures.

JOHN FOGARTY

Philadelphia
February 1969
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CHAPTER I

AFFINE ALGEBRAIC SETS

I-1 ALGEBRAIC SETS IN AFFINE SPACE

We fix, once and for all, an algebraically
closed field k, making no assumption about the
characteristic of k. Let API denote the affine
space kn =k x - xk (n factérs)l QP is a
vector space over k, but for the moment, this
fact will play a subordinate role.

If F = F(Xl,...,xn) is a polynomial irr the

n variables Xl,...,Xn with coefficients in k,

\
we say that the point x = (xl,...,xn) in éé is
a zero of F if F(xl,...,xn) = 0. The set of

zeroes of F 1is called the locus of F, and is
denoted by V(F). A subset V of éﬁ is called

a2 hypersurface in é? if it is the locus of a non-

constant polynomial.
Let k[é?] denote the ring k[Xl,...,Xn] of
polynomials in X ,...,Xn with coefficients in k.

L
I1If B is a subset of A", the set of F € k[énl

1



2 INVARIANT THEORY

such that F(x) = 0 for all x € B is an ideal
in k[én] which we denote by lAn(B), or simply
by I(B). cConversely, if I is an ideal in k[A"],
the set of x e gn such that F(x) = 0 for all

Fe I 1is called the locus of I in _A_n, and
denoted by XAH(I)' or simply by Vv(1). 1If S
is any subset of k[én] then the set of all x €
A" such that F(x) = 0 for all F€ S is the
locus of an ideal in k[én], viz., the ideal

generated by S. In other words, ﬂ V(F) = V(1),
) Fe S
where I is the ideal generated by S.

EXERCISE. Verify the following assertions. Here,
I and J denote ideals in k[gn] and B and C
denote subsets of é_n.

i) I c J implies V(J) C V(I).

ii) B C C implies I(C) C I(B).

iii) I(BuC) I(B)NnI(C).

iv) If 1 +J={F+G:Fe1l, GeJJ},
then I + J is an ideal in k[én]

and V(I + J) = V(I)N V(J).

v) If 1J ={ZFiGi £ F€ 1,5, € J3,
then IJ is an ideal in k[A"],
and V(IJ) = V(INJ) =
V(I)U ¥(J).
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vi) Vv((0)) = a", and Vv((1)) = £.

Also I(a") = (0), and ZI(#) = (1).
vii) V(I(B)) D B, and I(V(I)) D I.

viii) I(V(I)) =1 if and only if

F'€ I implies F € I for all

n > 0, and all F e k[é?].

DEFINITION 1.1. A subset V of A? is called an
algebraic set in &? if and only if VvV = V(I(V)).

This means that V is an algebraic set in
A? if and only if V is the locus of some ideal
in k[éﬁ]. We note that two ideals in k[é?] may
very well have the same locus in éé without being
the same. Conversely, if B and C are subsets
of A", I(B) = I(C) does not imply that B = C.
However if B and C are algebraic sets then this
cannot happen, i.e., I(B) = I(C) implies B = C.
According to what we have said above, every élgebraic
set ih én is an intersection of hypersurfaces,
viz., if V is an algebraic set, then

- N
V-Felw)gwh

We now topologize Al by taking as closed
sets the finite sets together with Al and the
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empty set. Note that this topology is very coarse,
i.e., there are comparatively few closed sets. Now
we can regard each F € k[é?] as a mapping of

AP into Al. On éﬁ, the coarsest topology such
that all these mappings are continuous is called

the Zariski topology. This means that the Zariski

topology is completely determined by the ring

kﬁén] of k-valued functions on AF.

PROPOSITION 1.2. A subset B of A" is closed
in the Zariski topology if and ohly if B is an
algebraic set. In fact, the complements of hyper-
surfaces form a basis for the-open sets in the

Zariski topology on én.

Proof: Since every proper algebraic set in AP

is an intersection of hypersurfaces, and conversely,
it suffices to prove the second assertion. However
it is clear that V(FG) = V(F) VU V(G) for all

F, G & k[éﬁ]. This means that the hypersurfaceé are
closed under finite unions. Therefore the weakest
topology  on ép such that all F € k[g?] deter-
mine continuous mappings is just the.one whose
closed sets are arbitrary intersections of hyper-

surfaces.

tenceforth, the terms "closed" and "¢ ~:n"
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will refer exclusively to the Zariski topology.
If V is a closed subset of AP, i.e., an
algebraic set in QP, then V inherits a topology
from AF, viz., Z2C€ V is closed if and only if
there exists a closed subset W of An such
that 2 = VAW. This topology on V will also I
be called the Zariski topology.

If V is a closed subset of QF let
I =1I(v). Then for any F, Gek[A"], F|V = G|V
if and only F - G € I. Thus k[é?]/l may
be regarded és a ring of k-valued function on V.
We dénote this ring by k[V] and call it the

coordinate ring of V.

The following theorem - known as Hilbert's
nullstellensatz - is the cornerstone for our entire
deVelopment. Since the proof thch we give uses
ideas that are only introduced in chapter V, the
reader may omit the proof on a first reading
without prejudicing his comprehension of what

follows.

THEOREM A. If I is an ideal in k[éﬁ], then
V(I) = ¢ if and only if 1 = (1).

Proof: If "I = (1) then V(1) = g, as we have
already ncted. The converse statement is the hard
part. We must prove that if I is a proper ideal

in . k[é?],'then there is at least one point x € é?
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such that F(x) = 0 for all F € I.. Cleariy, if
we can prove this when I is maximal, then we are
finished.

Now let I be a maximal ideal in
k[é?] = k[xl,...,Xn]. Let xi denote the residue
of Xi modulo I. Now if F € I, then certainly
F(xl,...,xn) = 0. (This is a trivial formality).
Oon the other hand, since I is maximal, the ring
k[a™ /1 is a field - containing k. If we can
show that this field is k itself, then it will
follow that the n-tuple (xl,...,xn) is a point
of é?, and we are dope: Thus- the theorem boils

down to the following lemma of Zariski:

LEMMA: If° K is a field (not necessarily algebra-
ically closed) and if the ring K[xl,...,xh] is

a field, then the gi are algebraic over K.

Proof: We use induction on n. If n =1, then
X, cannot be transcendental over K .since in
that case, K[xl] is isomorphic to the ring of
polynomials in one variable, which is certainly
not a field. v

Now, by assumption, K[xl,...,xn] is a field,
so that it must contain the fraction field K(xl)
of K[xll. Therefore it contains the ring
K(xl)[xz,...,xn]. By induction, we may assume

that xz,...,xn are algebraic over K(xl). (Note



