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Preface

The need for better formal competence as it is generated by a sound
mathematical education has been confirmed by recent investigations by
professional associations, but also by IT opinion leaders such as Niklaus
Wirth or Peter Wegner. It is rightly argued that programming skills are a
necessary but by far not sufficient qualification for designing and control-
ling the conceptual architecture of valid software. Often, the deficiency in
formal competence is compensated by trial and error programming. This
strategy may lead to uncontrolled code which neither formally nor ef-
fectively meets the given objectives. According to the global view such
bad engineering practice leads to massive quality breakdowns with cor-
responding economical consequences.

Improved formal competence is also urged by the object-oriented para-
digm which progressively requires a programming style and a design
strategy of high abstraction level in conceptual engineering. In this con-
text, the arsenal of formal tools must apply to completely different prob-
lem situations. Moreover, the dynamics and life cycle of hard- and soft-
ware projects enforce high flexibility of theorists and executives on all
levels of the computer science academia and IT industry. This flexibil-
ity can only be guaranteed by a propaedeutical training in a number of
typical styles of mathematical argumentation.

With this in mind, writing an introductory book on mathematics for com-
puter scientists is a somewhat delicate task. On the one hand, computer
science delves into the most basic machinery of human thought, such
as it is traced in the theory of Turing machines, rewriting systems and
grammars, languages, and formal logic. On the other hand, numerous ap-
plications of core mathematics, such as the theory of Galois fields (e.g.,
for coding theory), linear geometry (e.g., for computer graphics), or dif-
ferential equations (e.g., for simulation of dynamic systems) arise in any



Vi Preface

relevant topic of computational science. In view of this wide field of math-
ematical subjects the common practice is to focus one’s attention on
a particular bundle of issues and to presuppose acquaintance with the
background theory, or else to give a short summary thereof without any
further details.

In this book, we have chosen a different presentation. The idea was to set
forth and prove the entire core theory, from axiomatic set theory to num-
bers, graphs, algebraic and logical structures, linear geometry—in the
present first volume, and then, in the second volume, topology and cal-
culus, differential equations, and more specialized and current subjects
such as neural networks, fractals, numerics, Fourier theory, wavelets,
probability and statistics, manifolds, and categories.

There is a price to pay for this comprehensive journey through the over-
whelmingly extended landscape of mathematics: We decided to omit
any not absolutely necessary ramification in mathematical theorization.
Rather it was essential to keep the global development in mind and to
avoid an unnecessarily broad approach. We have therefore limited ex-
plicit proofs to a length which is reasonable for the non-mathematician.
In the case of lengthy and more involved proofs, we refer to further read-
ings. For a more profound reading we included a list of references to
original publications. After all, the student should realize as early as pos-
sible in his or her career that science is vitally built upon a network of
links to further knowledge resources.

We have, however, chosen a a modern presentation: We introduce the
language of commutative diagrams, universal properties and intuitionis-
tic logic as advanced by contemporary theoretical computer science in
its topos-theoretic aspect. This presentation serves the economy and el-
egance of abstraction so urgently requested by opinion leaders in com-
puter science. It also shows some original restatements of well-known
facts, for example in the theory of graphs or automata. In addition, our
presentation offers a glimpse of the unity of science: Machines, formal
concept architectures, and mathematical structures are intimately related
with each other.

Beyond a traditional “standalone” textbook, this text is part of a larger
formal training project hosted by the Department of Informatics at the
University of Zurich. The online counterpart of the text can be found
on http://math.ifi.unizh.ch. It offers access to this material and in-
cludes interactive tools for examples and exercises implemented by Java
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applets and script-based dynamic HTML. Moreover, the online presenta-
tion allows switching between textual navigation via classical links and a
quasi-geographical navigation on a “landscape of knowledge”. In the lat-
ter, parts, chapters, axioms, definitions, and propositions are visualized
by continents, nations, cities, and paths. This surface structure describes
the top layer of a three-fold stratification (see the following screenshot of
some windows of the online version).
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il This applet visualises graphs and allows their ie. addi g of vertexes and
edges). Furthenmore, 1t is possible o display the components, Hamiltonian and Eulerian paths (if

existing), the spanning tree of the current graph. A drop-down list provides some predefined graphs for
expermentation.
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, b}. Therefore x = ayields x - {a. b} = 6. But
azc. Wwehad ¢ ¢ o, then we cannot have

{a. b, ¢} contains a, and ¢ * [a. b. ¢} contains

On top are the facts, below, in the middle layer, the user will find the
proofs, and in the third, deepest stratum, one may access the advanced
topics, such as floating point arithmetic, or coding theory. The online
counterpart of the book includes two important addenda: First, a list of
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errata can be checked out. The reader is invited to submit any error en-
countered while reading the book or the online presentation. Second, the
subject spectrum, be it in theory, examples, or exercises, is constantly up-
dated and completed and, if appropriate, extended. It is therefore recom-
mended and beneficial to work with both, the book and its online coun-
terpart.

This book is a result of an educational project of the E-Learning Center
of the University of Zurich. Its production was supported by the Depart-
ment of Informatics, whose infrastructure we were allowed to use. We
would like to express our gratitude to these supporters and hope that
the result will yield a mutual profit: for the students in getting a high
quality training, and for the authors for being given the chance to study
and develop a core topic of formal education in computer science. We
also deeply appreciate the cooperation with the Springer Publishers, es-
pecially with Clemens Heine, who managed the book’s production in a
completely efficient and unbureaucratic way.

Zurich, Guerino Mazzola
February 2004 Gérard Milmeister
Jody Weissmann
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CHAPTER 1

Fundamentals—
Concepts and Logic

Die Welt ist alles, was der Fall ist.
Ludwig Wittgenstein

“The world is everything that is the case” — this is the first tractatus in
Ludwig Wittgenstein’s Tractatus Logico-Philosophicus.

In science, we want to know what is true, i.e., what is the case, and what is
not. Propositions are the theorems of our language, they are to describe
or denote what is the case. If they do, they are called true, otherwise they
are called false. This sounds a bit clumsy, but actually it is pretty much
what our common sense tells us about true and false statements. Perhaps
an example would help to clarify things:

“This sentence contains five words” This proposition describes some-
thing which is the case, therefore it is a true statement.

“Every human being has three heads” Since I myself have only one head
(and I assume this is the case with you as well), this proposition de-
scribes a situation which is not the case, therefore it is false.

In order to precisely handle propositions, science makes use of two fun-
damental tools of thought:

e Propositional Logic

e Architecture of Concepts
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These tools aid a scientist to construct accurate concepts and to formu-
late new true propositions from old ones.

The following sections may appear quite diffuse to the reader; some
things will seem to be obviously true, other things will perhaps not make
much sense to start with. The problem is that we have to use our natural
language for the task of defining things in a precise way. It is only by
using these tools that we can define in a clear way what a set is, what
numbers are, etc.

1.1 Propositional Logic

Propositional logic helps us to navigate in a world painted in black and
white, a world in which there is only truth or falsehood, but nothing in
between. It is a boiled down version of common sense reasoning. It is the
essence of Sherlock Holmes’ way of deducing that Professor Moriarty was
the mastermind behind a criminal organization (“Elementary, my dear
Watson”). Propositional logic builds on two propositions, which are de-
clared to be true as basic principles (and they seem to make sense...):

Principle of contradiction (principium contradictionis) A proposition
is never true and false at the same time.

Principle of the excluded third (tertium non datur) A proposition is
either true or false—there is no third possibility.

In other words, in propositional logic we work with statements that are
either true or false, no more and no less.

In propositional logic there are also some operations which are used to
create new propositions from old ones:

Logical Negation The negation of a true proposition is a false proposi-
tion, the negation of a false proposition is a true proposition. This
operation is also called ‘NOT".

Logical Conjunction The conjunction of two propositions is true if and
only if both propositions are true. In all other cases it is false. This
operation is also called ‘AND’.

Logical Disjunction The disjunction of two propositions is true if at least
one of the propositions is true. If both propositions are false, the
disjunction is false, too. This operation is also known as ‘OR’.



