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individually refereed (as for a journal). It should not be assumed that the published proceedings must
reflect conference events in their entirety. The series editors will normally not interfere with the
editing of a particular proceedings volume - except in fairly obvious cases, or on technical matters,
such as described in §§ 2 - 5. The names of the scientific editors appear on the cover and title-page
of the volume .

§ 2. The proceedings should be reasonably homogeneous i.e. concerned with a limited and
welldefined area. Papers that are essentially unrelated to this central topic should be excluded. One
or two longer survey articles on recent developments in the field are often very useful additions. A
detailed introduction on the subject of the congress is desirable.
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PREFACE

The department of mathematics of the University of Delhi South
Campus, organised a National Seminar from Aaggust 2-4, 1990 and an
[

International Conference from August 5-6, 1990 in wmemory of the late

Professor U.N. Singh. The theme of the seminar as well as the  conferenc

was "Recent Trends in Contemporary Anaslysis”. This volume comprises the

Q@

proceedings of the conference and also includes papers by mathematicians
who were unable to attend. The topics that are covered include PFunctional
Analysis, Operator Theory, Abstract Harmonic Anslysis, Fourier Analysis

Approximation Theory and Function Theory.

The volume is dedicated to the memory of Professor U.N. Singh who
was a distinguished analyst and amongst the pioneers who initiated the
study of Functional Analysis in India. It includes a paper by him written a

few weeks before his demise.

The department is grateful to the University Grants Commission of
India and the National Board of Higher Mathematics for their financial
support. We would like to express our gratitude to Professor P.K. Jain,
Professor R. Vasudevan, Dr. Pramod Kumar, Dr. 5.C. Arora and Dr. Ajay Kumar
for their help in the preparation of this volume and to GSavitri Devi,

Poonam Satija and Preeti Nigam for their diligent proof readinsg.

We are also grateful to Manvinder Singh for placing his computer

expertise at our disposal which helped us in various ways.

Finally, we would like to express our thanks to Springer Verlag

for their interest and cooperation in bringing out this volume.

B.S5. Yadav

Dinesh Singh
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A QUALITATIVE UNCERTAINITY PRINCIPLE FOR HYPERGROUPS

AJAY KUMAR

DepicCATED TO THE MEMORY OF UN. SINGH

It is known that for a locally compact abelian group G if f € Ll(G)
and the product of the measure of the support of f and its Fourier
transform % is less than one then f = 0 a.e. It is also known that if G is
with a noncompact identity component and the measure of the support of each
f and its Fourier transform % is finite, then f = 0 a.e. In this paper we

study generalizations of these results for commutative hypergroups.

The uncertainity principles in Fourier analysis assert that the more a
function f is concentrated, the more its Fourier transform % will be spread
out. It has been known for quite sometime that if f e LZ(Rn) and the
support of f and that of its Fourier transform % are bounded, then f = 0

a.e.

For a commutative hypergroup K equipped with Haar measure m, let K be
the dual space with Plancherel measure m [6] and [7]. For f e Ll(K), let

Afz{xeK: f(x)=0} and Bf:{reK: f(¥)=0}. The main aim of this paper is to
show that if m(Af)n(Bf) < 1, then f=0 a.e. If K has a noncompact identity
component (with some additional continuity condition) and m(Af)<m, n(Bf)<m,
then £ = 0 a.e.

For K :(Rn, the above results have been proved by Matolcsi and Szics
[8] and Benedicks [1] and for locally compact abelian groups by Hogan [5].
Some of the proofs of our results are largely inspired by [5] and [8]. Non

abelian groups have been studied by Price and Sitaram‘'[9], Cowling, Price

and Sitaram [3] and Echterhoff, Kaniuth and Kumar [4].



Let B(K) denote the o-algebra of Borel subsets of K and {"E the

characteristic function of E e B(K). For E€B(K) and FEB(lE), define

projections

P(E): L2(K) » L2(K) by £ - £  ‘and pL(F) : L2(K) » L3(K) by ¢ - #

Clearly | |P(E)|| = 1 and ||P1(F)| |= 1. For f € L%(K) and F  B(k), let Q be
the  projection on L2(K) defined by Q(F)f = (PL(F)E)’. For

projections P1 and P2 on a Hilbert space H denote by Pl’\ P2 the projection

on Pll-l N PZH'

THEOREM 1. If E€ B(K) and F € B(lz) are such that m(E)m(F) < 1, then
P(E) N Q(F) = 0.

PROOF. If m(E) = 0. or n(F) = 0, then for f € LZ(K), P(E)Yf = 0 or
Q(F)f= 0, so suppose that m(E) # 0 and n(F) # 0. Now m(E)(F)< 1 => m(E) <

o and m(F)<co. Let g = (f‘)}: By ([6], 12.1I), it follows that g LZ(K).
F

For any x € K,
le(x)| = Ifr(x)fF('r)dﬂ(r)l =S|r(x)|drn(r)<n(F).
K F

So for any x,y € K we have |g(x¥y)| < n(F) s dpx* py(z) = n(F).
K
Now for any v € Ll(K) N LZ(K) and x € K,
(PEYA(FIW) (x) = Ep(x) (PL(FW ) (%) = £ () (& p v ) ()
=g (1) £ R = Ep(x) prw(x)
Thus | |P(E)Q(F)¥ | |, = m(E)=(F) | [¥] ], and

Za®)| vl 1,

| IPEI(EW] |, < (m(E))!
Therefore, P(E)Q(F)y € LI(K) N LZ(K). Apprlying the above inequalities

to P(E)Q(F)v, we get



He®aE)Z ||, = m@EN2=En?  ||v]],

and [Hee®aEn(l, = mE)YY2m@E)?||v]],-
Thus by inducton

n-1/2

| | (P(EYA(F)) ™| |, < (m(E)) =EN | ¥l ],-
2 1

Therefore | | (P(E)Q(F))™v| |,+0asn + .

Let feLZ(K).There exists £, « L'(K) n L%(K) euch that | [£-£, || < =/2.

1
Choose n large enough so that ||(P(E)Q(F))nf1| | < €/2. Hence

| HPEQENE] ], < | (BEQENE-£)]| ]|, + | | (PEQEFNE ], < .
2 1 2 11192

So | I(P(E)Q(F))nf”2 +0asn -+ o for all fe LA(K).
Thus for £ € P(E)(L2(K)) M Q(F)(LZ(K)), we have

L€l 5= [I(REXAE) €| |, + 0 80 £ = 0.

COROLLARY 2.[et f € Ll(K) be such that m(Af)ﬂ(Bf) < 1.Then £ = 0 a.e.

PROOF. We first remark that f e L1(K), m(Ag) <o and m (B) < ® if and

only if f € Lz(l(), m(Af)<m and n(Bf)<oo.Clear1y P(Af)fz f and Q(Bf)f

(Pl(Bf)E)‘V = (£) = £ by ([6], 12.2C). So P(A;)Q(B)f= f. Hence ||f]|
| 1(P(A)Q(BL) E| | » 0, and hence £ = 0 a.e.
Now we proceed to prove the following version of the qualitative

uncertainity principle (QUP). K is said to satisfy QUP if for each f Ll(l(),

m(Af)<oo and rz(Bf)<oo => f =0 a.e.

LEMMA 3. If C is a compact subset of K, then thé map a » m(a ¥ C)

is continuous.



PROOF. For acK, a*C is compact. By regularity of the Haar measure, we
have for €>0, there exists an open set W such that a%C < W and

m(W)<m(axC)+e. Now for every ctEC1 = a¥C there exists a neighbourhood Uc of
e such that c % Ucc W. Also there exists a neighbourhood Vc of e such that
V.::*Vc < Uc' Now { c*Vc 1 c € Cl} covers Cl’ therefore, there exists a

finite subcover

n
- < < i
{ ci*Vc. :1=<1i=n}of Cl' Let V —.T Vc. . Then
i i=1 i
n n n
a¥CkVc U c, x V. %xVclU ci*Vc *VccUci* Uc < W.
i=1 * ¢y i=1 i i i=1 i

Thus m(aXCxV) < m(W) < m(a*C)+e. Hence by using ({6],3.3C) it follows

that the map a +» m(axC) is continuous.

Using the above lemma, it follows easily that if K is a compact
hypergroup, a discrete hypergroup or a locally compact group and C € K is
such that O < m(C) < o, then the map a + m(a*C) is continuous. We don’t
know whether the above lemma can be extended to a subset C of K with
0<m(C)<o. However, we assume in the remaining part that K satisfies the

condition that a » m(a*C) is continuous for every C € K with 0<m(C)<o.

PROPOSITION 4. Let K be a commutative hypergroup with' anoncompact

identity component Ko. Let C be a measurable subset of K with O<m(C)<e. If

COSC(m(Co)>0) and €>0, then there exists a € KO such that

o a o



: ) + - _
PROOF. Define h : K + R" by h(a) _lf( &+ fa*co gc ;(ECO)) dm

so that h(a) = m(C) + m(a*Co) - <a({‘C ), EC >. By assumption and the
o

continuity of the mapa*af ([2]1, &2), it follows that h is a

continuous function. Select & > 0 such that 0 < 256 < m(CO). There

exists a compact set F < C such that m(C ™~ F)<6. et M= F x F, by
([6],3.2B) M is a compact subset of K. Since e € Mand e € Ko 5
MnNn Ko is compact. As KO is non-compact, select a € KO ~(Mn K o)'

It is easy to see that (KF)CF = 0. If x< F, then clearly
a

a(EF)EF(x)ZO‘ If x € F, then

(EF)C li.(x)=fF(a’0<x) = 0, since {a}¥{x¥F = ¢. In fact, if
a

y € {a}¥{x}"F, then a e {x}¥{y} S FXxF =M, and hence a € M n Ko’
which is a contradiction. Next we claim that
S ~(fC ) fF (x)dm(x) < &. In fact,

KEl o]

5o (&g ) Ep(x) dn(x) =
a o

5B g€ ap) () Eg(x)dm(x)
K a o) o

; ECO(X) & (), (& ) (x)am(x) +‘-(r ECOnF.a(fF)dm ([6]1, 5.1D)

ol zC r‘-F‘a((F)dm = 4 tC nF‘dm = m(Coh F*)
K 7o K 7o

IA

m(C ~ F) < 6.



Thus

h(a)

S (fC + Ea*C = fC ~(CC ))(x)dm(x)
K o) a o

m(C) + m(a*Co) - IK (sz + EO‘\F‘) {C dm ([61,5.1 D)
a [
2m(C) +m(C) -F EpPEodm-S Ly p ~(Eo)dm (€ 0 2 ()
K a o K a o o a o)
2 m(C) + m(Co) -J EF ;(ECO Ydm - S fO’WF' dm
> m(C) + m(Co) - (m(CO)/Z) = (m(Co)/Z = m(C) = h(e).
Hence h is a nonconstant continuous function on the connected set KO and

h(a)>h(e). We may now choose aoe Ko such that

n(C)=h(e) < h(a ) =4 (& +¢ -f (&, ))(x)dm(x)

C axC Ca_ o
K (o} [)

< h(e) + € = n(C) + .

THEOREM 5. If K is a commutative hypergroup with a noncompact
identity component such that the map a + m(a*C) is continuous for all C € K

with o < m(C) < o, then K satisfies QUP.

PROOF. let f e Ll(K) be such that m(Af) < o and H(Bf) < o,
Suppose f_ < P(Af)(Lz(K))ﬂQ(Bf)(LZ(K)) and £ 0.

Let Ao = {xeK : | fo(x)|> 0} so m(Ao) >0. Select N € N with

Zm(Ao)Tt(Bf) < N. Take C0 s A0 and C = A0 in the above proposition.

There exists 3y € KO such that

m(Ag) < Sy Ly g T Ey g (g DEOEE <n(k) + 1/20(B).
o 10 o1l (e}



Take Co:Ao and C = A0 U(a1 b3 Ao) = A1 in the above proposition. Then

there exists an a, € Ko such that

m(A,) < S (&, + & -& T (& ))dm < m(A ) + 1/(2r(B.))
L K Al laZ*AO Al a2 Ao Al £
Repeating the above process we get Ai = Ai-l U (ai* AO) with aieKO

satisfying

mA; )< I (Ey + 8
K “i-

] W kA EA. a.(EA ))dm < m(A]-._l) + 1/(27!(Bf))
i o i-171 "o

As in the proof of Theorem 1, P(Ai)Q(Bf)p(x) = EA (Ji()(&‘B )y*p(x).
i f

Using ([5]1,1.2), it follows that
2 e 2
| IP(Ai )Q(Bf)l | 25 Jl;fl( Iil (X)(%f Wi(x*y) | dm(y) dm(x)

=5 5 | (& )] dnly)dn(x)
Ai K f

=55 7 zBf(r)lz ar ( )am(x)

A1K

< m(Ai)rr(Bf).

Thue dim (P(Ay)(L2(K))N Q(BL) (LA(K)) < m(Ay)m (B,)

= m(Ag_; U (ay % A )m(B;)

s (&

+ £ -&
K By-1 oA

MRAPRL LIS

IA

L+ - a.(Z, ))dm 7(B.)
K An-1 <"uanAo Ay NCAg t



< (m(Byg_y) + 1/(2n(B,))m(By)

< (m(A;) + N/(Zﬂ(Bf))ﬂ(EE) < N2+ N/2 = N. - (1)
Let £, = ai(fo) so that £.(¥) = »(a))f ().
Now QBQE(x) = S £ ()7 (a; % ®) £ ()an()
K
= Q(Bf)fo (ai * x) = fo(ai X x) = fi(x)
for all 0 = i < N.

-

As supp fi = {ai}* supp fo’ f.1 =0 a.e. on (ai b3 Ao).

Since P(Am)fi(x) = EAm(x) fo(a.i % x), we have

_{x) fo(atn * x) # 0

O for 0 = i < m-1. Therefore fm is not a

PA ~ A D)) =8,
m m

and P(Am ~ Am—l) fi(x)
linear combination of £ , f..... £ and hence { £ , f. ..... f.} is a
o) 1 m-1 o 1 N
set of N+1 linearly independent set in P(AN)(LZ(K)) N Q(Bf)(LZ(K)).

This leads to a contradiction to (1). Hence fO =0 a.e.

I would like to thank Prof.(Mrs.) Ajit I. Singh for some

useful discussions.
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