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Preface

Linear algebra and matrix theory have long been fundamental tools in
mathematical disciplines as well as fertile fields for research in their own
right. In this book, and in the companion volume, Topics in Matrix Ana-
lysis, we present classical and recent results of matrix analysis that have
proved to be important to applied mathematics. The book may be used
as an undergraduate or graduate text and as a self-contained reference
for a variety of audiences. We assume background equivalent to a one-
semester elementary linear algebra course and knowledge of rudimentary
analytical concepts. We begin with the notions of eigenvalues and eigen-
vectors; no prior knowledge of these concepts is assumed.

Facts about matrices, beyond those found in an elementary linear alge-
bra course, are necessary to understand virtually any area of mathemati-
cal science, whether it be differential equations; probability and statistics;
optimization; or applications in theoretical and applied economics, the
engineering disciplines, or operations research, to name only a few. But
until recently, much of the necessary material has occurred sporadically
(or not at all) in the undergraduate and graduate curricula. As interest in
applied mathematics has grown and more courses have been devoted to
advanced matrix theory, the need for a text offering a broad selection of
topics has become more apparent, as has the need for a modern reference
on the subject.

There are a number of well-loved classics in matrix theory, but they
are not well suited for general classroom use, nor for systematic individ-
ual study. A lack of problems, applications, and motivation; an inade-
quate index; and a dated approach are among the difficulties confronting
readers of some traditional references. More recent books tend to be either

ix-



X Preface

elementary texts or treatises devoted to special topics. Our goal was to
write a book that would be a useful modern treatment of a broad range
of topics.

One view of “matrix analysis” is that it consists of those topics in
linear algebra that have arisen out of the needs of mathematical analysis,
such as multivariable calculus, complex variables, differential equations,

‘optimization, and approximation theory. Another view is that matrix

analysis is an approach to real and complex linear algebraic problems
that does not hesitate to use notions from analysis - such as limits, con-
tinuity, and power series - when these seem more efficient or natural than
a.purely algebraic approach. Both views of matrix analysis are reflected
in the choice and treatment of topics in this book. We prefer the term
matrix analysis to linear algebra as an accurate reflection of the broad
scope and methodology of the field.

For review and convenience in reference, Chapter 0 contains a sum-
mary of necessary facts from elementary linear algebra, as well as other

. ‘'useful, though not necessarily elementary, facts. Chapters 1, 2, and 3

contain mainly core material likely to be included in any second course in
linear algebra or matrix theory: a basic treatment of eigenvalues, eigen-
vectors, and similarity; unitary simila;ity, Schur triangularization and its
implications, and normal matrices; and canonical forms and factoriza- '
tions including the Jordan form, LU factorization, QR factorization,
and companion matrices. Beyond this, each chapter is. developed sub-
stantially independently and treats in some depth a major topic:

Hermitian and complex symmetric matrices (Chapter 4). We give
special emphasis to variational methods for studying eigenvalues
of Hermitian matrices and mclude an introduction to the notior
of majorization. ° .

Norms on vectors and matrices (Chapter 5) are essential for er-
ror analyses of numerical linear algebraic algorithms and for the
-study of matrix power series and iterative processes. We discuss
the algebraic, geometric, and analytic properties of norms in some
detail, and make a careful distinction between those norm results
for matrices that depend on the submultiplicativity axiom for
matrix norms and those that do not.

Eigenvalue location and perturbation results (Chapter 6) for gen-
eral (not necessarily Hermitian) matrices are important for many
applications. We give a detailed treatment of the theory of Gers-
gorin regions, and some of its modern refinements, and of rele-
vant graph theoretic concepts.
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Positive definite matrices (Chapter 7) and their applications, in-
cluding inequalities, are considered at some length. A discussion
of the polar and singular value decompositions is included, along
with applications tomatrix approximation problems.

Component-wise nonnegative and positive matrices (Chapter 8)
arise in many applications in which nonnegative quantities nec-
essarily occur (probability, economics, engineering, etc.), and
their remarkable theory reflects the applications. Our develop-
ment of the theory of nonnegative, positive, primitive, and irre-
ducible matrices proceeds in elementary steps based upon the
use of norms.

In the companion volume, further topics of similar interest are treated:
the field of values and generalizations; inertia, stable matrices, M-matrices
and related special classes; matrix equations, Kronecker and Hadamard
products; and various ways in which furnctions and matrices may be
linked.

This book provides the basis for a variety of one- or two-semester
courses through selection of chapters and sections appropriate to a par-
ticular audience. We recommend that an instructor make a careful pre-
selection of sections and portions of sections of the book for the needs of
a particular course. This would probably include Chapter 1, much of
Chapters 2 and 3, and facts about Hermitian matrices and norms from
Chapters 4 and S.

Most chapters contain some relatively specialized or nontraditional
material. For example, Chapter 2 includes not only Schur’s basic theorem _
on unitary triangularization of a single matrix, but also a discussion of
simultaneous triangularization of families of matrices. In the section on
unitary equivalence, our presentation of the usual facts is followed by a
discussion of trace conditions for two matrices to be unitarily equivalent.
A discussion of complex symmetric matrices in Chapter 4 provides a
counterpoint to the development of the classical theory of Hermitian
matrices. Basic aspects of a topic appear in the initial sections of each
chapter, while more elaborate discussions occur at the ends of sections or
in later secfions. This strategy has the advantage of presenting topics in a
sequence that enhances the book’s utility as a reference. It also provides
a rich variety of options to the instructor.

Many of the results discussed hold or can be generalized to hold for
matrices over other fields or in some broader algebraic setting. However,
we deliberately confine our domain to the real and complex fields where
familiar methods of classical analysis as well as formal algebraic tech-
niques may be employed.
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Though we generally consider matrices to have complex entries, most
examples are confined to real matrices, and no deep knowledge of com-
plex analysis is required. Acquaintance with the arithmetic of complex
numbers is necessary for an understanding of matrix analysis and is
covered to the extent necessary in an appendix. Other brief appendices
cover several peripheral, but essential, topics such as Weierstrass’s theo-
rem and convexity.

We have included many exercises and problems because we feel these
are essential to the development of an understanding of the subject and
its implications. The exercises occur throughout as part of the develop-
ment of each section; they are generally elementary and of immediate use
in understandiltlg the concepts. We recommend that the reader work at
least a broad selection of these. Problems are listed (in no particular
order) at the end of each section; they cover a range of difficulties and
types (from theoretical to computational) and they may extend the topic,
develop special aspects, or suggest alternate proofs of major ideas. Sig-
nificant hints are given for the more difficult problems. The results of
some problems are referred to in other problems or in the text itself. We
cannot overemphasize the importance of the reader’s active involvement
in carrying out the exercises and solving problems.

While the book itself is not about applications, we have, for motiva-
tional purposes, begun each chapter with a section outlining a few appli-
cations to introduce the topic of the chapter.

Readers who wish to consult alternate treatments of a topic for ad-
‘ditional information are referred to the books listed in the References
section following the appendices. These books are cited in the text using
a brief mnemonic code; for example, a book by Jones and Smith might
be referred to as [JSm]. The codes and complete citations appear alpha-
betically by author in the References section.

The list of book references is not exhaustive. As a practical concession
to the limits of space in a general multitopic book, we have minimized
the number of citations in the text. A small selection of references to
papers - such as those we have explicitly used - does occur at the end of
most sections accompanied by a brief discussion, but we have made no
attempt to collect historical references to classical results. Extensive bib-
liographies are provided in the more specialized books we have refer-
enced. The reader should also be aware of broad and current biblio-
graphical resources covering portions of matrix analysis such as the KWIC
Index for Numerical Linear Algebra [CaLe] and sections 15 and 65 of the
Mathematical Reviews.

We appreciate the helpful suggestions of our colleagues and students
who have taken the time to convey their reactions to the class notes and
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preliminary manuscripts that were the precursors of the book. They in-
clude Wayne Barrett, Leroy Beasley, Bryan Cain, David Carlson, Dipa
Choudhury, Risana Chowdhury, Yoo Pyo Hong, Dmitry Krass, Dale
Olesky, Stephen Pierce, Leiba Rodman, and Pauline van den Driessche.

R.A.H.
C.R.1.
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CHAPTER 0.

Review and miscellanea

0.0  Introduction

The purpose of this chapter is to catalog briefly, without proof, a number
of useful concepts and facts, many of which implicitly or explicitly under-
lie the material covered in the main portion of the book. Much of this
material would be included, in some form, in an elementary course in
linear algebra, but we also include a number of useful items that are not
commonly found elsewhere or that do not easily fit into the subsequent
structure. Thus, this section may serve the reader as a short review prior
to beginning the book or as a convenient reference when necessary. We
also use this chapter to set basic notation and give some definitions; thus,
reference to it will also be useful for these purposes. We do assume that
the reader is already familiar with the elementary concepts of linear alge-
bra and with mechanical aspects of matrix manipulations, such as matrix
multiplication and addition.

0.1 Vec_toi' spaces

Though generally implicitly, and not usually explicitly, involved in the
treatment in this book, a vector space is the fundamental setting for
matrix theory. '

0.1.1  Scalar field. Underlying a vector space is the field, or set of
scalars, from which multiplication occurs. For our purposes, that under-
lying field will almost always be the real numbers R or the complex num-
bers C (see Appendix A) under the usual addition and multiplication, but.

I



2 Review and miscellanea

it could be the rational numbers, the integers modulo a specified prime
-number, or some other field. When the field is unspecified, we use the
symbol F. To qualify as a field, a set of scalars must be closed under two
specified binary operations (“addition” and “multiplication”); both oper-
ations must be associative and commutative and have an identity element
in the set; inverses must exist in the set for all elements under the addition
operation and for all elements except the additive identity (0) under the
multiplication operation; the multiplication operation must also be dis-
tributive over the addition operation.

0.1.2  Vector spaces. A vector space V over a field F is a set V of objects
(called vectors) which is closed under a binary operation (“addition”)
which is associative and commutative and has an identity (“0”) and
additive inverses in the set. The set is also closed under an operation of
left multiplication of the vectors by elements of the scalar field F, with
the following properties for alla, beFand all x, ye V: a{x+y)=ax+ay,
(a+b)x =ax+bx, a(bx) = (ab)x, and ex = x for the multiplicative iden-
tity ee F.

For a given field F, the set F” of n-tuples (n a positive integer) with
components from F forms a vector space over F under the obvious oper-
ations (component-wise addition in F"). The special cases R" and C" are
the basic vector spaces of this book. The set of polynomials with real or
with complex coefficients (of no more than a specified degree or of arbi-
trary degree) and the set of real or complex valued continuous functions
or arbitrary functions on an interval [a,b]CR are :'so examples of
vector spaces (over R or C). There is, of course, a fundamental difference
between the finite-dimensional space R" and the infinite-dimensional
vector space of real-valued continuous functions on [0, 1].

0.1.3  Subspaces and span. A subspace U of a vector space V is a sub-
set of ¥ that is, by itself, a vector space over the same scalar field. For
example, ([a, b,0]7: a, beR] is a subspace of R3. Usually a subspace of
a vector space V is defined by some relation that identifies particular ele-
ments of V in such a way that the resulting set is closed under the addi-
tion in V - for example, the elements of R> with last component 0. It is
in this regard that it is useful to think of the resulting set as a subspace
rather than as a vector space in its own right. In any event, the intersec-
tion of two subspaces is again a subspace.

If S is a subset of a vector space V, the span of S is the set Span S =
(@, v+ a0+ - +agveiay,...,a€F, v),...,00€8,k=12,..}. Notice
that Span S is always a subspace even if S is not a subspace. The set S is~
said to span the vector space V if Span S=V.
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0.1.4 Linear d:pendence and independence. A set of vectors {x), xa,
.., Xk} in a vector space is said to be linearly dependent if there exist
coefficients a, ..., a, not all 0, in the underlying scalar field F such that

apxy+ax;+ oo +agx =0

Equivalently, one of the x; terms is a linear combmanon with coetﬁuems
from F, of the others. For example {[1,2,3] T ,0,-117,12,2, 217y
is a linearly depencent set in R’. A subset of ¥ that is not linearly
dependent over F is said to be linearly ‘ndependent. For example,
{[1,2,3]7, 11,0, —1]7} is a linearly independent set in R’. It is important
to note that both concepts intrinsically pertain to sefs of vectors. Any
subset of a linearly independent set is linearly independent; {0} is a lin-
early dependent set; and hence any set which includes the O vector is
linearly dependent. It can happen that a set of vectors is linearly depen-
dent, while any proper subset of it is linearly independent.

0.1.5 Basis. A subset S of-a vector space V is said to span V if every
element of V may be represented as a linear combination (with coeffi-
cients from the underlying scalar field) of elements of S. For example,
{(1,0,0]7,10,1,017,[0,0,17, (1,0, —1]7} spans R* over R (or C" over
C). A linearly independent set which spans a vector space V is called a
basis for V. Bases are highly nonunique, but are very efficient in that each
element of ¥ can be represented in terms of the basis in one and only one
way, and this is no longer true if any element whatsoever is appended to
or deleted from the basis. An independent set in V is a basis of V if and
only if no set which properly contains it is independent. A set that spans
V is a basis for V if and-only if no proper subset of it stilt spans V. Every
vector space has a basis.

0.1.6 Extension to a basis. Any linearly independent set in a vector
space ¥ may be extended to a basis of V; that is, given a linearly indepen-
dent set {x;, X3, ..., Xx} in ¥, there exist additional vectors x; ;. ,..., Xy, ... €
V such that {X, ..., X, ... ] is a basis of V. The extension of a given inde-
pendent set to a basis is, of course, not unique [for example, any vector
with nonzero third component may be appended to the independcnt set
(11,0,017, [0,1,0]7} to produce a basis of R*}. The example of the real
vector space C[0, 1] of real-valued continuous functions on {0, 1] shows
that a basns need not, in general, be finite; the infinite set of monomials
(1, x,x%,x3%...)isan independent set in C[0, 1].

0.1.7 Dimension. If some basis of the vector space V consists of
a finite number of elements, then all bases have the same numbcr of
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elements; this common number is called the dimension of the vector space
V, and is denoted by dim V. In this event, V is said to be finite-dimensional;
otherwise V is said to be infinite-dimensional. In the infinite-dimensional
case (e.g., C[0, 1]), there is a one-to-one correspondence between the ele-

ments of any two bases. The real vector space R" has dimension n. The vec-
tor space C” has dimension n over the field C but has dimension 2n over
the field R. The basis (e, e,, ..., e,} in which e; has a 1 as its ith compo-
nent and 0’s elsewhere is sometimes called the standard basis of R” or C".

0.1.8 Isomorphism. If U and V are vector spaces over the same scalar
field F, and if f: U—V is an invertible function such that f{ax+by)=
af(x)+bs(y) forall x, ye U and all a, b e F, then fis said to be an iso-
morphism and U and V are said to be isomorphic (“same-structure”).
Two finite-dimensional vector spaces over the same field are isomorphic
if and only if they have the same dimension; thus, any n-dimensional
vector space over the field F is isomorphic to F”. Any n-dimensional real
vector space is, therefore, isomorphic to R”, and any n-dimensional com-
plex vector space is isomorphic to C”". Specifically, if V is an n-dimen-
sional vector space over a field F with specified basis 8 = [x), ..., x,], then,
since any element x € ¥ may be written uniquely as x =a;x; + - +a,,x,,,
a;eF, i=1,...,n, we may associate x with the n-tuple [x]g =[ay, ..., @17,
relative to the basis 8. The mapping x — [x]m is an isomorphism between
V and F” for any basis .

0.2 Matrices

The fundamental object of study here may be thought of in two impor-
tant ways: as a rectangular array of scalars and as a linear transforma-
tion between two vector spaces, given specified bases for each space.

0.2.1 Rectangular arrays. A matrix is an m-by-n array of scalars from
a field F. If m = n, the matrix is said to be square. The set of all m-by-n
matrices over F is denoted by M,, ,(F), and M, ,(F) is abbreviated to
M, (F). In the most common case in which F =C, the complex numbers,
M, (C) is further abbreviated to M, and M,, ,(C) to M,, ,. Matrices are
usually denoted by capital letters. For example, if

2 -3 0
A= .
[—l T 4]
then A e M, ;(R). A submatrix of a given matrix is a rectanguiar array
lying in specified subsets of the rows and columns of a given matrix.



0.2 Matrices 5

For example [# 4] is a submatrix (lying in row 2 and columns 2 and 3) of
A, above. ’

0.2.2 Linear transformations. Let U be an n-dimensional vector space
and V be an m-dimensional vector space over theésamc scalar field F; let
®, be a basis of U and ®), be a basis of V. We may use the isomorphisms
x—[x]g, and y = [y]ag, to represent vectors in U and V as n-tuples and
m-tuples over F, respectively. A linear transformation is a function
T: U - V such that T(a,x, +a>x;) = a; T(x;) + a; T(x;) for arbitrary scalars
a, and a, and vectors x; and x,. A matrix 4 e M, ,(F) corresponds to a
linear transformation T:U -V in the following way: The vector
y=T(x) if and only if [y]a, = Alx]a,. The matrix A is said to represent.
the linear transformation T (relative to the bases By and ®y); the repre-
senting matrix A depends upon the bases chosen. When we study the
matrix A, we realize we are studying a linear transformation relative to a
particular choice of bases, but explicit appeal to the bases is usually not
necessary.

"0.2.3  Vector spaces associated with a given matrix or linear transfor-
mation. There is no loss of generality in associating an n-dimensional
vector space over F with F”, and we shall think of AeM,, ,(F) as a
linear transformation from F” to F” (and also as an array). The domain
of such a linear transformation is F”; its range is {yeF":y=Ax for
some x € F"}. The null space of Ais [xe F": Ax=0}. Therange of Ais a
subspace of F”, and the null space of A is a subspace of F”. We have
the relation

n=dimension of null space of A+ dimension of the range of A

between these two subspaces.

0.2.4 Matrix operations. Matrix addition is defined entry-wise for
arrays of the same dimensions and is denoted by + (“A+ B”). It corre-
sponds to addition of linear transformations (relative to the same basis),
and it inherits commutativity and associativity from the scalar field. The
zero matrix (all entries zero) is the identity under addition, and M,, ,(F)
is itself a vector space over F. Matrix multiplication is defined in the
usual way, is denoted by juxtaposition, AB, and corresponds to the com-
position of linear transformations. As such, ‘it is defined only when
AeM,, ,(F), Be M, ,(F), and p =n; it is associative. It is not, in gen-
eral, commutative, for example,
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1 011 2 " 1 2771 ©O
0 2|3 4 3 4|0 2
but it can be commutative when restricted to certain subsets of M,(F),

which are worthy of study. There is an identity under matrix multiplica-
tion, the matrix I € M, (F) of the form

0

This matrix and all scalar multiples of it (called scalar matrices) commute
with all other matrices in M, (F) and are the only matrices which do so.
Matrix multiplication is distributive over matrix addition.

We note here that the symbol 0 is used throughout to denote each of
the following: the zero scalar, the zero vector (al components equal to
the zero scalar), and the zero matrix (all entries equal to the zero scalar).
Generally, the context will make clear which it is, so that confusion need
not result. We also use the symbol I to denote the identity matrix of any
size. If there is potential for confusion, the dimension will be indicated.

0.2.5 The transpose and Hermitian adjoint. If A= [a,,]eM,,, a(F),
the transpose of A, denoted A’, is that matrix in M, »(F) whose entries
are aj;; that is, rows are exchanged for columns and vice versa. For
example,

[12}]’_;
456 M

Of course, (A7) = A. The Hermitian adjoint A*of A€ M, ,(C) is defined
by A*=A47, ‘where Ais the componcnt-w:se conjugate For example,

1+i 2—i]*_[1-i -3
[ -3 —Zi] - [2+i 2i ]
Both the transpose and the Hermitian adjoint {and the inverse to be dis-
cussed in (0.5)] obey the reverse-order law: [AB}* = B*A* and (AB)" =
BT A7, assuming the product is defined. For the conjugate of a product,
there is no reversing: AB=AB. If x, ye M, ;=C", then y*x is a scalar,
and its Hermman ad)omt and complex conjugate are the same; thus,

*x)*= =xy=y'x.

4
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