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Preface

We have endeavoured in this planned three volume work to present an
exposition of the basic results, methods and applications of the theory of
random processes. The various branches of the theory are. however. not
treated in equal detail.

This volume should be of value principally to mathematicians who are
interested in studying the theory of random processes. We hope that
researchers who apply the methods of the theory of random processes
will also find the book interesting and useful. Prerequisites to the study
of this book are basic courses in probability theory. measure theory and
integration, and functional analysis.

The first volume of “The Theory of Random Processes™ is devoled to
general problems of the theory of random functions and measure theory
in function spaces. Some of the material presented i the authors” book
“Introduction to the Theory of Random Processes ” (Ergebnisse der
Mathematik Band 72) is utilized here. Chapters HL IV V and TN ol the
Introduction have been revised and now constitute the contents of Chap-
ters I, T11, IV and VI respectively.

In volume 11, the following topics are treated: the general theory of
Markov processes, the theory of processes with independent increments,
jump Markov processes, semi-Markov processes and branching provesses.,

The third volume deals with the theory of martingales, stochastic
integrals, stochastic differential equations, diffusion processes and it
theorems associated with stochastic differential equations,

1. 1. Gihman and A. V. Skorohod
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Chapter 1

Basic Notions of Probability Theory

°

§1. Axioms and Definitions

Events. The basic notions of probability theory are experiment, event
and probability of events.

A formal description of these notions is usually based on the set-
theoretical model of prebability theory developed by A. N. Kolmogorov
in 1929.

The experiments studied in probability theory (referred to as stoch-
astic experiments) are carried out when a certain set of conditions Y is
satisfied. This set of conditions does not uniquely determine the results
of the experiment (also called the outcome or realization). This means
that if the experiment is repeated (provided that the set of conditions Y
is accurately satisfied) the results of the experiment will generally be
different.

When forinalizing the notions of probability theory the first funda-
mental assumiption is that the results of a collection of experiments
under investigation in a given situation can be described by means of a
certain set Q. Every meaningful event (occurring or not during the given
experiment) corresponds to a certain subset 4 of Q in such a manner that
the probabilistic operations on events correspond to set-theoretical oper-
ations on the corresponding subsets of €.

Moreover, the points weQ correspond to atoms - namely, every
event is a sum of points while each point w cannot be represented as a
sum of other events. For this reason the points belonging to Q2 are called
elementary events. ;

In relation to €, an experiment is completely characterized by the
class of those events (subsets of ) such that one can assert in each case
whether it did or did not occur during the given experiment. These events
are called observable (in the given experiment).

Henceforth we shall adhere to this model of probability theory and
identify events with the corresponding subsets of Q. The resulting dual
terminology is presented below in a glossary translating set-theoretic
notions into probabilistic notions.
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Set theory Probability theory

Space Q . Sure event

w a point of 2 Elementary event

0 the empty set Impossible event

A asubsetof 2, 4=Q Event

The set A is contained in B (4 < B) Event 4 implies B

C the sum (union) of sets 4 and B C the sum (union) of events
{C=AuB) A and B

C the intersection of sets A and B C  the intersection (or product) of events
(C=AnB) Aand B

A the complement of set .4 A the contrary event of 4

€ the difference of two sets 4 and B C the difference of events 4 and B
(C=A4'B)

Sets 4 and B are without common points Events 4 and B are disjoint
(4mB8=0)

3 ¢ - RS SRE RS I SN S L I el

'.l ncal as well as a purdy mathematical pmm of view 1t doe
not make sense to regard any arbitrary subsets of Q as cvents worthy
of interest. Therefore one must select out of @ a suitable class of ¢vents.
This class should be sufficiently wide and contain all the events which
may arise during the solution of various practical problems. On the
other hand, the size of this class is limited by the feasibility of effective
utilization of mathematical techniques, Obviously. the problem of se-
leumg the corresponding class of events should be solved individually
in each case, however, we shall always assume subsequently that this
class forms a g-algebra of events.

Definition 1. A class of events 2 is called an alyebra of events if it con-
tains the sure event Q, the impossible event 0 and together with cach
pair of events 4 and B belonging to the class, their sum as well as the
contrary event 4.

Two events  and 0 constitute the rrivial alyebra.
The minimal algebra containing event 4 consists of four events: £,
0.4 and 4.

Definition 2. An algebra of events which contains a sequence of events
along with their sum is called a o-algebra.

It is clear that in the definitions and properties above we could have

referred to algebras and o-algebras of sets of a certain abstract space .

n 3. The space @ along with the g-algebra of sets ¥ defined on
d the measurable space {2, 2} and the subsets of Q belonging
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to A are called NA-measurable sets (U-measurable events) or simply mea-
surable sets (events) if no ambiguity arises concerning the o-algebra under
consideration. ;

The o-algebra of all the events under consideration in a given situ-
ation is usually denoted by the letter S. With respect to the measurable
space (22, ) any given stochastic experiment is completely characterized
by the class of events & observed during this experiment. Clearly, (this
class is contained in © and it is also evident that the class §& is closed
with respect to the operations of addition, intersection and complemen-
tation. It is therefore natural to consider & a ¢-algebra of events. There-
fore. formally a stochastic experiment is determined by a certain o-
algebra & of S-measurable events. We call it the g-algebra corresponding
10 the given experiment. : :

Probability. Definition 4. A triple (Q, &, P) consisting of a space of ele-

‘mentary events €. a selected ¢-algebra of events S in @, and a measure

P defined on & such that P(2)=1 is called a probability space and the
measure P is called the probability.

Probability spaces are the initial objects of probability theory. This.
however, does not contradict the fact that when solving many specific
problems the probability space is not given explicitly.

We present below several of the simplest well known properties of
probability which easily follow from its definition (S and S,, n=1.2.....
as given below all belong to 2): ;

a) P(0)=0:
B IS S =0 k#Er, Cihen P(U SJ:ZP {5:):
N=k / 1

& if S, <8, then 'P(S,.5,)=P(S,)—P(S.):
d) P(5)=1-P(5):

Sipoig, N Nen 8§10 then P(“\M}S/\q
f) if S.2Sy:.. n=h2... then P(ﬂ S,,):IimP(S,,).
1 7

Random variabies. The concept of a random variable corresponds to the
description of a stochastic experiment which measures a certain numer-
ical quantity £. It is assumed that for any pair of numbers a and b (a<b)
the event s (4. b) expressing that e(a, ) 1s an observable event.
The minunal o-algebra §. containing all the events Ala, b), —x<a<
<b< % is the a-algebra corresponding to this stochastic experiment.
Let A,(— % <x< %) denote the event {=x. This event is measur-
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e 1 1 3
able. Indeed 4,= M A4 (x——, x+—>. Moreover, if x; #x,, events A,
n n

n=1

and A, are disjoint (this follows from the single-valuedness of the mea-
surement results) and the union of all 4,, — 00 <x < cc, is the set €, since
the measurement result is always represented by some real number. We
now define a single-valued real function f(w), w€Q by setting f(w)=x
if we A,. It follows from the definition, that £ = f(w) in each experiment
and, moreover, that the set {w:a< f(w)<b} = A(a, b) is measurable. Re-
call that a real-valued function f(w) defined on a measurable space
{Q, S} is called measurable (S-measurable) if for any two real numbers
a and b the set {w:a< f(w)<b}eS. Therefore, a random variable ¢ can
be identified with a certain measurable function on the probability space
(Q. S, P).

Definition 5. A ©-measurable real-valued function of elementary events
@ is called a random variable ¢ (on a given probability space {Q, &, P}).

Henceforth, we shall occasionally consider measurable functions on
{Q. €, P} which may possibly take on the values + oc also, or functions
which are defined only on a measurable subset of {Q2, €, P}. These
functions are called generalized random variables. ;

We note the following point connected with the definition of a
random variable. It is commonly assumed that from the empirical
point of view one cannot distinguish between events which differ on
an event.of probability zero. It would therefore be natural to identify
two random variables ¢ and n which are equal to each other with prob-
ability 1 and hence interpret a random variable as a class of measurable
functions, in which each pair of functions may differ only on a set of
probability 0. Such functions are called equivalent (or P-equivalent).
This point of view is also justified by the fact that the majority of notions
introduced here as well as the relationships obtained refer essentially
to classes of equivalent functions. However, a consistent adherence to
this point of view presents certain technical as well as basic problems.
For this reason it would seem more convenient to regard random varia-
bles as individual functions and use special notation for their equivalent
classes.

Definition 6. Random variables ¢ and # are called equivalent (P-equiv-
alent) if P{&#n} =0. The P-equivalence of 2 random variables ¢ and 7
is denoted by &=y (mod P).

Equivalent random variables are also referred to as sallsfymg E=
- almost surely (a.s.) or £ =n with probability 1.

~_ Analogous terminology and notation is also used in more general
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cases. We thus say that a certain function (or certain other objects)
possess property H almost surely (for almost all w or for all w (modP))
if the set of w for which this property is not satisfied is of probability 0.
For example, if a sequence of random variables ¢, = f,(w) converges to
¢= f(w) for each w except for a certain set N and P(N)=0, we say that
¢, converges to ¢ almost surely or that

¢=lim¢, (modP).

We now present a number of basic properties of random variables
which follow directly from the corresponding properties of arbitrary
measurable functions. It is assumed that the random variables are
defined on a fixed probability space {Q, S, P].

a) If h(ty, t5,.... t,) is an arbitrary Borel function of n real variables

I yares she L@ Ga o Cov ot 0 Al Tandom vaniables, then k(¢,, &,,..., <,) IS
also a random variable.
b) If {&;n=1.2....} is a sequence of random variables, then

sup S, infé,, imé,, lim &, are also random variables.

Hence a very wide class of analytic operations commonly performed
on functions trarsforms a random variable into a random variable
independently of the specific form of the g-algebra &. It is easy to see
that these operations do not interfere with the equivalence relations
between the random variables. More precisely:

cf If &£ and n, aréequivalent (R=1, 2. .0), and'h(t,, 65,....t,) isa
Borel function of n real variables, then i(&,, &,. ..., &, )and h(ny, 12 ..0 1)
are also equivalent. Moreover, the following pairs of random variables
are equivalent as well: sup &, and sup#,. inf&, and infy,, lim &, and limy,,
h_m»," and ]_‘E‘_'In

d) Let £,,n=1,2,... be a sequence of random variables. The eyent
S={lim¢, exists} is S-measurable. It is easy to verify that this event
can be represented as:

S= m U m {(U lcm, sz'< }

k=1 n=1m,my>n

Indicators of events serve as an important example of random variables.
The indicator of an event A is a random variable y, = x,(w) defined as
follows:
wya(@)=1 if wed
(@)=0"if wéd,

If Ae &, then y,(w) is ©-measurable.
Note the correspondence between set-theoretical operations on
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events and the analogous algebraic operations on indicators:

Y. zafw)y if A,nA,=0 for k#r.

k=1

/ i ((l)) =

3 .
ZAnn(w) = XA ((U) ZB((U)~

7apl@)=74(0)=7p(w), if Bcd.

Y o (@) =TM 7, (@), Jiima, (@) =1m 74, ().
A random variable & is called discrete if it admits only a finite or
countable number of distinct values. Such a variable can be expressed

as =Y Cta, (@), where A, are S-measurable sets pairwise disjoint and
k .

U 4,=. For each w only one summand is nonzero in the r.h.s. of the

k
last equality and & =¢, if we 1,. For an arbitrary random variable ¢ one

can always construct a sequence ¢, of discrete random variables taking
on only a finite number of possible values and converging to ¢ for each
. To prove this assertion it is sufficient to set

WP e, P : i 4
5T 2 Z <]+"—) LAjo
J nk=1 ;

o

n

where

ik g
Ap=solj+ —<C<[+-—.
n n

; : [
It then follows that |&—& | <. if |&]<n.
n
It is easy to verify that for a non-negative ¢ one can constructa mono-
tonically increasing sequence of non-negative discrete random variables
(taking on a countable number of values) uniformly converging to ..
(ndeed, in this case we set

s o k ] k+1
;":kz 77 % i~ Where Ak,,:{w: = T ",;,“}-
=0 - <

Then 0<é—¢&,<2 " for all w.

Random elements. The notion of a random variable can be generalized
to the notion of a random element with the values in an arbitrary mea-
surable space {Z,B}. Let {Q S} and {Z,®B} be two measurable
spaces. The mapping g:w—x (xeX) is called a measurable mapping of
(Q, &} into {Z, B} if g~ ' (B)={w:g(w)e B} for an arbitrary BeB.

Definition 7. A random element & with values in a measurable space
{7, B} is a measurable mapping of {Q. S. P} into {Z, B}.

' &2
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If Z is a metric space then B is always assumed to be a g-algebra of
Borel sets (unless stipulated otherwise). If Zis a vector space, then £ is
called a random vector.

Let a sequence of random elements {&; k=1,2,....n} be given,
defined on a fixed probability space {Q, S, P} with values in the spaces
{Z,, B,} correspondingly. This sequence can be considered as a single
random element ¢, which will be called the direct product of random
elements &,,.... &,. with values in a measurable space {#, 8B} where

n

n
# =[] 4, is the product of the spaces &, Z,...., £, and B=[] B,
e i
is the product of the s-algebras B,.8,,..., B,.

The last remark is also valid in the more general case of an arbitrary
set of random elements ¢,. xe 4. with the values in {Z,, B,} wiere 4 is
a set of indices. Here the product % = [] Z, represents the space of all

xeA
the mappings v =y(2): 2—x,: X,€Z,. 2€ 4. i.e. the space of all functions
defined on A4 admitting a value in Z, for each ze 4.
A cylindrical set in % is called a set C of all ye % satisfying the relations
of the tvpe
Y )EB, k=) ..,n B,eB, .~

"Here n is an arbitrary integer and %, are arbitrary elements of A.
More precisely. we call C=C,, , (B,, x... x B, ) a cylindrical set with
the bases B, x B,,x...x B, over the coordinates x;.x,...., %, The
minimal ¢-algebra containing all the cylindrical sets is denoted by B and
is called the product of g-algebras 8B,. B=[] B,. It is easy to observe
2€ A

that the mapping g:@— (%) defined by the relations g(®)=g(w. x)=
= f.(w) where f,(w)=¢, is a measurable mapping of {Q, &} into {¥. B].
If all Z, are the same. 2, =2, then % =7 represents the space of all
functions with values in 7 defined on 4 and the mapping g(w) associates
a function from 2" with each elementary event «: in other words the
mapping ¢ (o) is a random function. Thus, the family of random variables
1&,. 2€ A} may be regarded as a random function. ,

Let &= f(w) be a random element with the values in {#, 8.

L

Definition 8. A4 g-algebra yenerated by a random element ¢ is a g-algebra
o, or a(£) consisting of all sets of the form {f~'(B): BeB).

Clearly the class of sets { /™ '(B); Be B} is a ¢-algebra.

The following statement is an equivalent formulation of the above:
the og-algebra o, is the minimal o-algebra in Q with respect to which the
random element & is measurable.

It is intuitively clear that measurability of a certain random variable »
with respect to o, means that 5 is a function of C.
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Lemma 1. Let {=f(w) be a random element on (2, S, P) with values in
{(Z, B} and n be a o,-measurable random variable. Then there exists a B-
measurable real valued function g(x) such that n=g().

Proof. Assume that # is a discrete random variable admitting values a,.
n=1,2,.... Let A,={w:n=a,}. Then there exists B,eB such that
ne

f~'(B,)=A4,. Put B,=B,\ \U B,. The sets B,eB are disjoint, f "' (B,)=
k=1

B=1 - o] o s ol
=A\ U 4 =4 Sand f“‘(u B,’,):UA,,:Q, ie. f(Q)=U B.. Now
1 1 4 1

k=1

put g(x)=a, if xe B,. Then n=g(&).

We now consider the general case. There exists a sequence of discrete
g.-measurable random variables y,, convergent to n for each w. Tho.
fore 1, =y, (&), where g, (x) is B-measurable. The set of points S on which
the functions g,(x) converge to a certain point is B-measurable. it con-
tains f(Q) and limg,(x)=1limyn,=n for xe f(Q). Putting g(x)=limg,(x)
for xe$§ and g(x)=0 for x¢S we obtain n=g¢(&). O

Mathematical expectation. The mathematical expectation of a random
variable is its most important numerical characteristic. This notion
corresponds to the intuitive notion of the value of the arithmetic mean
of observations on a random variable in a long sequence of identical
stochastic experiments.

By deninition the mathematical expectation of a random variable
&= f(w) is equal to the integral of f(w) with respect to the measure P,
We denote it as

Ei:J J(w) P(dw)zJ ¢ dP:
Q 2
Often the designation @ of the region of integration is omitted. Mathe-

matical expectation possesses a number of properties which are well.
known from the theory of abstract integration.

Convergence in probability. Various types of convergence of sequences
of random variables play an important role in probability theory. The
definition of convergence with probability 1 (almost surely) was presented
earlier. :

Definition 9. If there exists a random variable ¢ such that for any >0

« P{|&,—¢|>el—=0 as n—oo,
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we say that the sequence {¢,; n=1,2,...} converges in probability to the
random variable ¢ and denote

&=P-lim¢,.

In measure theory convergence in probability corresponds to con-
vergence in measure. The following corollaries follow from the general
results of measure theory:

a) If a sequence {¢,; n=1, 2, ...} converges almost surely it converges
in probability. The converse is generally not true. However. a subsequence
which converges almost surely can be selected Jrom a sequence of random
variables convergent in probability.

b) A necessary and sufficient condition Jfor convergence in probability
of a sequence of random variables is as Jollows: for arbitrary ¢>0 and
0>0an ny=n(e, ) can be found such that for n and n'> Ho

P{lén'_fn'>£}<5'

This condition is called the condition of fundamentality in probability of
the sequence {¢,,n=1,2,...}.

¢) If {¢=P-lim¢, and n= P-lim ¢» then & =n(mod P).

d) Let 5,=P-lim¢,,(k=1,2, ..., m) and let the function ¢(i,, t, ...,
1,) be everywhere continuous in the m-dimensional Euclidean space R™,
except possibly on a Borel set D(D < R™) such that

LS (U PR Nm)€D}=0.

Then the sequence &,=q(¢,,, Eam-or Emn) coOnverges in probability to
N=@M. N2, ..., N,). In particular, if the sequences &,, are convergent in
probability, so are the sequences ¢ tntCam €102, and E,,/E,,, the latter
under the assumption that P {P-lim ¢ 22=0}=0 and, moreover

P'lim(éln+£2n)=P'lim€ln+P'lilann? P-li éln P'liméln
-im R R S
P-hm (éln'éln)=P'limélnP'lim52n- 6211 P'hm 5271

A suificient condition for convergence with probapbility 1 as stated be-
low is useful in various specific problems:

Lemma 2. If there exists a sequence £,>0, such that
Z P{I€n+1_€nl>£n}<w’ Z €, <00,
n=1 n=1

then &, converges with probability 1 to a certain random variable o
If for any >0,
Y P{ie=&il>e) <o,

then &, converges to ¢ with probability 1.
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Proof. Let A, denote the event |£,, , —&,|>¢,. Then

P(lﬂﬁA"):P( B dy A,.>< lim Y P(4,)=0.
m=1 n=m m-+0 m

Therefore, the terms of the series &, +E (o, —<,) starting with some
1

index m=m(w) are dominated with probability I by the terms of the
oC

convergent series Y &,. This proves the first assertion. Next, let-

S
Gsfﬁ-

b . i

] 1
Piimii—(,(>0] = P{U i) B'\»niglim im Y P(By,)=0.

N—=ox m-+> n=m

Then

N=]lm=1 n=m
which proves the second assertion. ] *
£ ~spaces. By Z,=2,(Q.S.P) (p=1) we denote a linear normed
space of random variables ¢ on (Q. E,P) satisfying E|&|P<o0. The
norm in %, is defined by

ISl =1Elcr ) ™

-fu

The convergence of the sequence ¢, to its limit ¢ in ¥, (the % ,-con-
vergence) signifies that:

Elc—-C&,IP—0 as n—o.

The & ,-convergence implies convergence in probability. This fact
follows directly from Chebyshev’s inequality

The space Z, is complete. The most important % -spaces are &, =%
and %,. We shall now discuss %, in some detail. Note that all the
definitions above and the theorems in this section are valid with no
modifications for the complex-valued random variables.

The space Z,=.2,(RQ, S, P) of complex-valued random variables
becomes a Hilbert space if we define in .%,, for each pair of random
variables ¢ and 5, their scalar product putting it equal to E&y.

Two random variables { and n are called orthogonal if E(7=0. In
the case when £ and » are real and EC =En =0, orthogonality is equivalent
to the property that variabies are uncorrelated. Convergence of the

&



