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Preface

This volume presents the set of papers accompanying the lectures of the seventh
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2007 was devoted to formal techniques for performance evaluation and
covered several aspects of the field, including formalisms for performance mod-
eling (Markov chains, queueing networks, stochastic Petri nets, and stochastic
process algebras), equivalence checking and model checking, efficient solution
techniques, and software performance engineering.

The opening paper by Stewart presents Markov chains, the fundamental per-
formance modeling formalism in use since the early 1900s. The author outlines
the events that have led to the present state of the art in the numerical approach
to Markov chain performance modeling and describes current solution methods
and ongoing research efforts.

The paper by Balsamo and Marin is about queueing networks, a class of
stochastic models extensively applied to represent and analyze resource-sharing
systems such as communication and computer systems. The authors mostly fo-
cus on product-form queueing networks, which allow one to define efficient algo-
rithms to evaluate average performance measures.

The paper by Balbo illustrates generalized stochastic Petri nets, a modeling
formalism that can be conveniently used both for the functional verification of
complex models of discrete-event dynamic systems and for their performance
and reliability evaluation.

The paper by Clark, Gilmore, Hillston, and Tribastone provides an introduc-
tion to stochastic process algebras and their use in performance modeling, with a
focus on the PEPA formalism. The authors describe the compositional modeling
capabilities of the formalism and the tools available to support Markov-chain-
based analysis.

The paper by Bernardo defines and compares several Markovian behavioral
equivalences with respect to a number of criteria such as their discriminating
power, the exactness of the Markov-chain-level aggregations they induce, the
achievement of the congruence property, the existence of sound and complete
axiomatizations, the existence of logical characterizations, and the existence of
efficient verification algorithms.
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The paper by Kwiatkowska, Norman, and Parker presents an overview of
model checking for both discrete-time and continuous-time Markov chains, which
deals with algorithms for verifying them against specifications written in prob-
abilistic extensions of temporal logic, including quantitative properties with re-
wards. The authors also outline the main features supported by the probabilistic
model checker PRISM.

The paper by Gribaudo and Telek summarizes the basic concepts and the
potential use of Markov fluid models, together with the factors that determine
the limits of their solvability and practical guidelines that can be extracted from
these factors to establish the applicability of fluid models in practice.

The paper by Knottenbelt and Bradley explores an array of techniques for an-
alyzing stochastic performance models with large state spaces. The authors con-
centrate on explicit techniques suitable for unstructured state spaces and show
how memory and run-time requirements can be reduced using a combination
of probabilistic algorithms, disk-based solution techniques, and communication-
efficient parallelism based on hypergraph partitioning.

The paper by Ciardo discusses some important classes of decision diagrams
and shows how they can be effectively employed to derive symbolic algorithms
for the analysis of large discrete-state models. In particular, the author presents
both explicit and symbolic algorithms for state-space generation, CTL model
checking, and continuous-time Markov chain solution.

The paper by Smith reviews the origins of software performance engineering
(SPE) and covers its fundamental elements: the data required, the software per-
formance models, and the SPE process. The author also illustrates how to apply
the modeling and analysis techniques and reports on the current status as well
as the outstanding problems.

The closing paper by Woodside is about using the SPT/MARTE annota-
tions to capture important performance features of a software design, such as
platform operations, component submodel composition, state machine uses, and
communication costs and delays. The author also addresses the relationship of
the annotated design model to the different kinds of performance model that
can be extracted.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for performance
evaluation. We wish to thank all the lecturers and all the participants for a lively
and fruitful school. We also wish to thank the entire staff of the University Res-
idential Center of Bertinoro for the organizational and administrative support.
Finally, we are very grateful to BiCi — Bertinoro international Center for infor-
matics, which kindly provided a sponsorship for this event under the Leonardo
Melandri Program.

June 2007 Marco Bernardo
Jane Hillston
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Performance Modelling and Markov Chains

William J. Stewart*

Department of Computer Science, North Carolina State University,
Raleigh, NC 27695, USA
billy@csc.ncsu.edu

Abstract. Markov chains have become an accepted technique for modeling a
great variety of situations. They have been in use since the early 1900’s, but it is
only in recent years with the advent of high speed computers and cheap memory
that they have begun to be applied to large-scale modeling projects. This paper
outlines the events that have lead to the present state-of-the-art in the numerical
approach to Markov chain performance modeling and describes current solution
methods and ongoing research efforts.

1 Introduction

1.1 A.A. Markov

It is appropriate in a talk of this nature to include a few sentences about the life and
work of A.A. Markov. Three sources were used to gather the information in this sec-
tion, namely a paper by Basherin and Naoumov, presented at the Fourth International
Conference on the Numerical Solution of Markov Chains, [2], a paper by Seneta [67]
given at the 2006 Markov Anniversary Meeting, and a web page maintained by the
School of Mathematics and Statistics at the University of St Andrews, Scotland [74].
Andrei Andreevich Markov was born on June 14, 1856, in Ryazan, Russia. He was the
fourth of his father’s 6 children by his first marriage. His father also had 3 children by
his second wife. An inborn deformity of the knee meant that the very young Markov
had to use crutches. At age ten he was operated on and thereafter walked with a slight
limp. However, it was leg problems that lead to his death. In later life, he developed an
anuerysm in the leg which required multiple surgeries, one of which proved fatal. He
died on July 20, 1922 at the age of 66 and is buried in the Mytrophany Cemetery in St.
Petersburg.

Four years after Markov’s birth, the family moved to St. Petersburg where Markov
attended school. Apparently he was unsuccessful at many subjects, except mathemat-
ics, at which he excelled. He attended the University of St. Petersburg where he studied
under P.L. Chebyshev. He was awarded the gold medal and was offered an academic po-
sition within the university. His doctorate (1884) was entitled “On Certain Applications
of the Algebraic Continuous Fractions”. When Chebychev left the university in 1883,
Markov took over his probability theory course. Twenty years later he was made an
honorary professor, and shortly thereafter, he retired, although he continued to lecture
on probability theory and the theory of continuous fractions.

* Corresponding author.

M. Bernardo and J. Hillston (Eds.): SFM 2007, LNCS 4486, pp. 1-33, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 W.J. Stewart

A.A. Markov married Maria Valvatieva, the daughter of the owner of the estate on
which Markov’s father worked, in 1883. They has a son who was given the same name,
Andrei Andreevich, and who became a renown mathematician in his own right. A.A.
Markov Jr. worked in the fields of algebra, topology and mathematical logic and headed
the Department of Mathematical Logic at Moscow State University. Interestingly, this
position was filled by A.N. Kolmogorov after Markov Jr.’s death. It was Kolmogorov
who laid the foundations for the general theory of Markov processes.

Much of Markov’s work was concerned with investigations into the weak law of
large numbers and the central limit theorem. His introduction of the Markov chain was
to show that Chebyshev’s approach to extending the weak law of large numbers to sums
of dependent random variables could be extended even further. He introduced a simple
chain as “‘an infinite sequence z1, 2, ..., Tk, Ty, ... of variables connected in
such a way that 4, for any k is independent of 1, z3, ..., xp_1, in case z is
known”. Furthermore he extended this to complex chains in which “every number is
directly connected not with a single but with several preceding numbers”. For the most
part, his studies on chains involved simple homogeneous chains. His works address the
concept of irreducibility and he shows that the dominant eigenvalue of an irreducible
Markov chain must be one and that no other eigenvalue can exceed this in modulus.
Markov’s work has been the basis for much research and provides a powerful method
of analysis that is in vogue today.

1.2 Vic Wallace and the Recursive Queue Analyzer

To the best of this author’s knowledge, the first applications of Markov chains to the
performance evaluation of computer systems occurred in the early 1960’s at the Uni-
versity of Michigan. The Michigan Computer Modelling Project was established in the
Electrical Engineering department under the direction of Dr. Harrry Goode, the father
of “Systems Engineering”. Unfortunately Goode was killed in a car accident shortly
after its establishment. The project was supported by the Rome Air Development Cen-
ter and later by ARPA. The participants in the original project included Vic Wallace,
as principal investigator, Richard Evans, Eugene Lawler, Dennis Fife, Robert Carlson,
Richard Rosenberg, Robert Rosen and John Smith. The original project was followed
by others under the direction of Keki Irani. The specification for the first software pack-
age for Markov modelling, the Recursive Queue Analyzer, RQA-0, appeared in the first
report of the research group in 1964. This was a prototype program for the numerical
solution of the equilibrium state probabilities of Markov chain models and included the
use of sparse matrix algorithms and compact storage for the transition matrix. A soft-
ware package based on these specifications, called RQA-1, was written by Wallace and
Rosenberg and appeared in 1966.

In a paper presented at the first international conference on the numerical solution of
Markov chains [78], (and from which much of the content of this section is extracted),
Wallace cites a number of reasons why numerical solution techniques took so long to
develop and suggests that these same reasons were still present some 25 years after the
introduction of the Recursive Queue Analyzer. Among these was the idea that com-
puter Markov modelling was too new and unfamiliar, being more “mathematical” and
abstract, and not to be trusted. He also suggested that other techniques like product form
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networks and simulation, were distracting attention because they could be more readily
understood, and there were still enough problems that they could solve. Perhaps more
significantly, he postulated that the numerical techniques tended to be quite fragile, that
traps abounded to snare the unwary!

To illustrate one aspect of this, Wallace refers to an unsuccessful experience in the
application of RQA-1. He recalls in the above referenced paper, that although they had
been doing numerical Markov analysis for many years, “I can recall the embarrassment
in 1970 of encountering a seriously ill-conditioned model for the first time while con-
fidently engaged in consulting. No adjustments seemed to eliminate the problem, and
tens of thousands of iterations were getting nowhere.” It turns out that the corporation
for which Wallace was consulting was ICL, International Computers Limited, England.
The problem was to model a SCAN strategy on a disk store with a large number of
cylinders. The difficulty, it later turned out, was the occurrence of multiple eigenvalues
close to unity. The problems that Wallace faced are still with us today, even though much
progress has been made in the intervening years. These are the problems of finding sta-
ble and efficient algorithms for computing numerical solutions and data structures in
which to store and manipulate the transition matrices.

1.3 Alan Scherr

Alan Scherr enters the picture as a PhD student at M.L.T. in the process of completing
his thesis in electrical engineering in 1965. The university had recently acquired a new
“Compatible Time Sharing System” which allowed 300 users to simultaneously access
its software and run their programs. Scherr’s performance problem was to characterize
the system’s usage which he did by extensive simulations. On presenting his thesis
he was told that it just was not “academic” enough, that it needed more mathematical
formulas. To jump this final hurdle, Scherr used some techniques he had learned in
a recently completed operations research course to construct a very primitive Markov
chain model. He designated the integer n to represent the state of the entire system
when n users had submitted their requests — which leaves 300 — n users busy typing
and preparing to submit their request. What was truly amazing and unexpected was the
accuracy with which this simple model appeared to capture the actual behavior of the
computer. It was the success of this simple model that encouraged others to adopt the
Markov chain approach for performance evaluation. Scherr’s thesis was later awarded
the Grace Murray Hopper award by the ACM. More information on the work of Scherr
is can be found in a paper by Von Hilgers and Langville [76].

2 Context for Current State-of-the-Art

In the context of Performance Evaluation, numerical analysis methods refer to those
methods which work with a Markov chain representation of the system under evalua-
tion and use techniques from the domain of numerical analysis to compute stationary
and/or transient state probabilities or other measures of interest. It is often possible to
represent the behavior of a physical system by describing all the different states that it
can occupy and by indicating how the system moves from one state to another in time.
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If the time spent in any state is exponentially distributed, the system may be represented
by a Markov process. Even when the system does not possess this exponential property
explicitly, it is usually possible to construct a corresponding implicit representation.
When the state space is discrete, the term Markov chain is employed. The system being
modelled by the chain is assumed to occupy one and only one of these states at any mo-
ment in time and the evolution of the system is represented by transitions of the Markov
chain from one state to another. The information that is most often sought from such a
model is the probability of being in a given state or subset of states at a certain time after
the system becomes operational. Often this time is taken to be sufficiently long that all
influence of the initial starting state has been erased. The probabilities thus obtained are
referred to as the long-run or stationary probabilities. Probabilities at a particular time
t are called transient probabilities.

It follows that the three steps involved in carrying out this type of evaluation are
firstly, to describe the system to be analyzed as a Markov chain; secondly, to deter-
mine from this Markov chain description, a matrix of transition rates or probabilities;
and thirdly, from this matrix representation, to numerically compute all performance
measures of interest. The first involves characterizing the states of the system and for-
mulating the manner in which it moves from one state to another; the second requires
finding a manner in which to store the transition matrix efficiently; the third requires
the application of matrix equation solving techniques to compute stationary or transient
probabilities.

The Recursive Queue Analyzer, RQA-1, [77], essentially avoided the first step by
requiring a user to describe the transition matrix directly. Since the envisaged appli-
cations derived from queueing networks, the nonzero elements in the transition matrix
often repeat at well defined patterns in the matrix. RQA-1 defined a data structure which
attempted to capture such regularities and to store them as the trio (nonzero element,
pattern, initialization point). The amount of storage used was therefore minimized. The
numerical solution technique employed by RQA-1 was the Power method. In the liter-
ature, the authors reported some success with this approach, [78].

This was followed in the early 1970’s by this author’s Markov Chain Analyzer,
MARCA, [73]. MARCA provided a means of expressing a Markov chain as a system
of “Balls and Buckets”, essentially allowing a single state of the chain to be represented
as a vector, the state descriptor vector. The user has to characterize the way in which
the system changes states by describing the interactions among the components of the
state descriptor vector. With this information MARCA automatically generates the tran-
sition rate matrix and stores it in a compact form. The original solution method used
in MARCA was simultaneous iteration, a forerunner of the currently popular projection
methods. In 1974, a restriction of MARCA to queueing networks was developed and
incorporated into QNAP (Queueing Network Analysis Package), [56].

The 80’s witnessed the popularization of the matrix-geometric approach of Neuts,
[49], and the establishment of Generalized Stochastic Petri Nets (GSPN) as a valuable
modelling paradigm, [1, 15]. These advances were accompanied by a flurry of activ-
ity in numerical aggregation and disaggregation methods, [13, 44, 65] — extending
the seminal work of Courtois, [18], on nearly completely decomposable systems. This
period also saw advances in the computation of bounds, [26, 66], in specification
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techniques, [6], in state-space exploration, [12, 7], and so on. The most popular
applications were, and still are, in the fields of computer communications and relia-
bility modelling, [36, 40, 81, 82]. And, of course, this period was also rich in advances
led by the numerical analysis community, especially in the development of projection
methods, preconditioning techniques and in sparse matrix technology in general, [62].
To this day, research continues along the same paths. Advances continue to be made in
allthe aforementioned areas. Inaddition we see anincreased emphasis placed on stochastic
automata networks (SANs), and other structured analysis approaches,
[10,11,16,41,53,72]. These have advanced hand in hand with compositional approaches,
such as the stochastic process algebra package, PEPA, [32]. Given the ease of with which
GUIs (Graphical User Interaces) can now be programmed and the availability of cheap
memory and fast CPUs, many more numerical analysis software packages specificially
designed for performance evaluation have made their apparation. This period also wit-
nessed international conferences devoted to the topic, the first in 1990 and the second in
1995. It is significant that the third and fourth in this series were held jointly — with the
PNPM (Petri Nets and Performance Models) conference and the PAPM (Process Algebra
and Performance Modelling) conference in 1999 in Zaragoza, Spain and with the PNPM
(Petri Nets and Performance Models) conference and the Performance Tools and Tech-
niques, Tools’03 conference in Urbana-Champaign in 2003. In a short paper like this, it
is not possible to cover all aspects of the current state-of-the-art in anything other than a
perfunctory fashion. To offset this to some degree, an extensive bibliography is provided.

3 The Numerical Solution of Markov Chains

In Markov chain performance evaluation, all the desired performance measures are
largely computed from the stationary and transient distributions of the Markov chain.
In particular, the computation of stationary distributions is generally referred to as solv-
ing the global balance equations. These performance measures are computed from the
stochastic transition probability matrix P of the Markov chain The elements p;; of this
matrix P are the conditional probabilities that on leaving state 7 the Markov chain next
moves to state j. The relevant equations may be written as

P =, (1)

or alternatively, as
TQ =0, (2)

where P = QAt+ I and At < (max; |g;;|)~'. When we perform this operation we es-
sentially convert the continuous-time system represented by the transition rate matrix,
Q, to a discrete-time system represented by the stochastic transition probability ma-
trix, P. In the discrete-time system, transitions take place at intervals of time At, this
parameter being chosen so that the probability of two transitions taking place in time
At is negligible. The stationary distribution, 7, may be computed from either of these
equations. The transient distribution is computed form the Chapmann-Kolmogoroff
differential difference equations
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d
) — Q. te o, 7]
m(0) =mg an initial probability distribution.

We shall discuss computational aspects of the stationary and transient distributions
momentarily, but for the moment we shall address a topic that is receiving much atten-
tion in the current literature, the set of right-hand eigenvectors of P. An understanding
of the significance of these vectors is becoming increasing important in applications
such as data mining and search engine development.

3.1 Significance of Subdominant, Right-Hand Eigenvectors

It is known that a left-hand eigenvector corresponding to a unit eigenvalue of the
stochastic transition probability matrix of a Markov chain is its stationary probability
vector. As yet, no physical significance has been ascribed to the left-hand eigenvectors
corresponding to eigenvalues different from unity. The situation is otherwise for the set
of right-hand eigenvectors. When the Markov chain under consideration is irreducible
and noncyclic, its stochastic matrix has a single eigenvalue of modulus 1; i.e., the unit
eigenvalue. In this case some information concerning the tendencies of the states to
form groups may be obtained from an examination of the right-hand eigenvectors cor-
responding to the subdominant eigenvalues, i.e., the eigenvalues with modulus closest
to but strictly less than 1.0. The reason is as follows:

The equilibrium position of the system is defined by the stationary probability vector,
i.e., the left-hand eigenvector corresponding to the unit eigenvalue. With each state of
the system can be associated a real number, which determines its “distance” from this
equilibrium position. This distance may be regarded as the number of iterations (or the
length of time) required to reach the equilibrium position if the system starts in the
state for which the distance is being measured. Such measurements are, of course, only
relative, but they serve as a means of comparison among the states.

Let the row vector wzo) =(0,0,...,1,...,0) with i** component equal to 1, denote
that initially the system is in state 7. We shall assume that P possesses a full set of
linearly independent eigenvectors. Similar results may be obtained when eigenvectors
and principal vectors are used instead. Let z1, z2, . . ., z,, be the left-hand eigenvectors
of P (i.e., fo = )\jij forall j = 1,2,...,n), arranged into descending order ac-
cording to the magnitude of their corresponding eigenvalues. Writing wgl) as a linear
combination of these eigenvectors, we have

(1) T T T
w; T =Ty + %y ..+ Ciny,

where c¢;1, ¢i2, - . ., Cin, are the constants that define the linear combination. Repeated
postmultiplication of wgl) by P yields the steady-state probability vector. We have

wP = cyaT P+ coxl P+ ...+ cinzl P 3)
= Cill'{ + Cig)\gl'g +...+ Cin)\nxz = U)§2), 4)

and in general

(k+1) . .T kT kT
w, =ci®y + Ci2A3xy + ...+ Cin AT

nvn
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If the system initially starts in some other state j # ¢, we have

w(k+l)

T kT kT
5 =177 +Cj2Aa Ty 4+ ...+ cin AL, .

Since only the constant coefficients differ, the difference in the length of time taken to
reach the steady state from any two states ¢ and j depends only on these constant terms.
Further, if A is of strictly larger modulus than As, Ay, ..., then for large k, A5 > AF
for [ > 3, and it is the terms c;2 and cj2 in particular that contribute to the difference.
Considering all possible starting states, we obtain

(k+1)
wy cua:f + C12/\]2CZ‘F§F s Cln)\ﬁl‘g
k+1
wg I (321(1;{ + 022/\}2cx’21" 5w CQn/\,’imZ
= P P
wikE+D cn1%] + cn2Aizl + .+ cpp 2T
i.e.,
T
C11 C12 ... Cin il Ty
k T
C21 C22 ... C A @
wk+1) 222 2n 5 2 =C0AFXT,
Cni €1 + 3 : Cim )\’T‘L xZ
. . . . . 1) 1
To obtain the matrix C, consider the following: the matrix W V=(w{" w{" ... w{HT

was originally written in terms of the set of left-hand eigenvectors as
wih = cxT,

but since W) = I, we obtain
I=CcXx7,

ie,C = (X T)‘1 =Y, the set of right-hand eigenvectors of P. Therefore, it is from
the second column of the matrix C, i.e., the subdominant right-hand eigenvector of the
matrix P, that an appropriate measure of the relative distance of each state from the
stationary probability vector may be obtained. The third and subsequent columns may
be employed to obtain subsidiary effects.

States whose corresponding component value in this vector is large in magnitude are,
in a relative sense, far from the equilibrium position. Also, the states corresponding to
component values that are relatively close together form a cluster, or a subset, of states.
If, for example, the components of this vector are close either to +1 or to —1, then it
may be said that those states corresponding to values close to +1 form a subset of states
that is far from the remaining states, and vice versa. In this manner, it may be possible
to determine which states constitute near essential and near cyclic subsets of states. This
technique has been proven useful in a variety of applications in which groups of like
states need to be identified and isolated.
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3.2 Steady State Distributions

We now turn to the computation of steady-state distributions. A number of powerful
numerical procedures are available to us, but unfortunately there is not a single one
that works well in all circumstances. It is necessary to choose a particular method that
responds well to the size, structure and required performance measures. We examine
the various possibilities in the next few sections.

3.2.1 Direct Methods

Direct methods, in contrast to iterative and projection methods, perform a fixed number
of numerical operations to compute a solution to a system of equations. All direct meth-
ods for systems of linear equations are based on Gaussian elimination. In our case, we
apply these methods to equation (1) which is a homogeneous system of linear equations.
If the Markov chain is ergodic, the fact that the system of equations is homogeneous
does not create any problems, since we may replace any of the n equations by the
normalizing equation, Z;;l m; = 1, and thereby convert it into a nonhomogeneous
system with nonsingular coefficient matrix and nonzero right hand side. The solution
in this case is well defined. It turns out that replacing an equation with the normaliz-
ing equation is not really necessary. The usual approach taken is to construct an LU
decomposition of () and replace the final zero diagonal element of U with an arbitrary
value. The solution computed by backsubstitution on U must then be normalized. Fur-
thermore, since the diagonal elements are equal to the negated sum of the off-diagonal
elements (@ is, in a restricted sense, diagonally dominant), it is not necessary to perform
pivoting while computing the LU decomposition. This simplifies the algorithm consid-
erably. The problem of the size and nonzero structure (the placement of the nonzero
elements within the matrix) still remain. Obviously this method will work, and work
well, when the number of states is small. It will also work well when the nonzero struc-
ture of () fits into a narrow band along the diagonal. In these cases a very stable variant,
referred to as the GTH (Grassmann, Taskar and Heyman, [30]) algorithm may be used.
In this variant, all subtraction is avoided by computing diagonal elements as the sum of
off-diagonal elements. This is possible since the zero-row-sum property of an infinites-
imal generator is invariant under the basic operation of Gaussian elimination, namely
adding a multiple of one row into another. For an efficient implementation, the GTH
variant requires convenient access to both the rows and the columns of the matrix.

3.2.2 Basic Iterative Methods

When the number of states becomes large and the structure in not banded, the direct
approach loses its appeal and one is obliged to turn to other methods. For iterative
methods we first take the approach of solving equation (2) in which P is a matrix of
transitions probabilities. Let the initial probability distribution vector be given by 7(?).
After the first transition, the probability vector is given by 7(1) = 7(%) P; after k tran-
sitions it is given by 7(*) = 7(k=1) P = 7(0) Pk [f the Markov chain is ergodic, then
limy— o0 7% = 7. This method of determining the stationary probability vector, by
successively multiplying some initial probability distribution vector by the matrix of
transition probabilities, is called the Power method. Observe that all that is required
is a vector-matrix multiplication operation. This may be conveniently performed on



