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Editor’s Preface

This monograph, by one of the leading pioneers in the theory
of elasticity of an anisotropic body,. represents some of the sig-
nificant results of the author’s investigations in this important
field. A large class of problems in the plane theory of elasticity
including those problems which are reducible to this theory are
treated by the method of complex variables and other ingenious
techniques.

One of the basic contributions of the author is his extension
of N. I. Muskhelishvili’s work in the plane theory of isotropic
elasticity to the anisotropic case. Here, the author utilizes the
theory of analytic functions of several complex variables in an
elementary and systematic manner in order to solve some boundary
value problems in an elegant and practical manner. It is of in-
terest to point out that the theory of functions of several complex
variables which ordinarily is considered to be in the domain of
pure mathematics now finds application to problems in modern phys-
ics (e.g. dispersion relations of quantum field theory) as well as
to problems of technology (e.g. stress and deformation of thin
plate structures).

In view of the growing importance of the field of material
science it is hoped that this monograph will significantly aid
those scientists and engineers who are concerned with problems
involving anisotropic elasticity.

In translating the monograph no liberties have been taken
in altering the author’s style or intent. The only deviations
from the original have been the shortening of certain sentences



and paragraphs which otherwise would read awkwardly if translated
literally. However, this was done without sacrificing the meaning
Apart from these changes we believe that a faithful representation
of the original contents has been produced.

Julius J. Brandstatter

Stanford Research Institute
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Author’s Preface

Anisotropic materials play an important role in modern
technology. Missile and aircraft designers, specialists in
mining problems, solid state physicists, geophysicists, manu-
facturers of certain parts and materials, and in general, people
engaged in the material sciences—all must deal with a variety
of anisotropic problems. It is possible to produce structures
which exhibit an artificial anisotropy (for example, corrugated
plates and membranes made from a basic material which is elas-
tically isotropic). Certain structures which are reinforced or
strengthened by ribbing also become anisotropic. Thus, we see
the importance of anisotropy in many phases of modern technology.

In the past, materials, regardless of their composition,
were usually considered to be homogeneous and isotropic because
such assumptions resulted in simplified calculations. Today,
however, these simplified assumptions often lead to inadequate
or incorrect results; our sophisticated technology requires that
we take into account the anisotropy of materials, that is, the
differences in elastic properties of materials in various direc-
tions.

In order to calculate the stability of anisotropic bodies
which undergo elastic deformation, it is necessary to determine
the stresses and deformations by theoretical means; that is, it
1s necessary to solve problems of the theory of elasticity of an
anisotropic body. As is well known, the number of independent
elastic constants in an isotropic body is equal to two (the fun-
damental constants are usually taken to be the Young's modulus
and Poisson’s ratio). In the case of an anisotropic body the
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number of independent elastic constants can be considerably
larger, and a maximum of independent elastic constants can exist.
In order to solve problems which are concerned with stress dis-
tribution and deformation in an anisotropic body, it is necessary
to start with the basic equations of the theory of elasticity

and to take into account the fact that the body is characterized
by more than two elastic constants.

The theory of elasticity of an isotropic body has been thor-
oughly investigated. This is not the case, however, for the
theory of elasticity of anisotropic bodies; in this latter field
a great deal of literature exists in the form of monographs and
articles published in different journals. Certain special prob-
lems on the state o” stress and strain and the stability of
anisotropic plates have received intensive study (for example,
see the book Anisotropic Plates [18]). However, many problems
of anisotropic bodies still have not been systematically examined.

We believe that it is essential to bring together this scat-
tered material and to present it in a systematic and orderly manner.
This would enable the specialists who encounter questions in the
theory of elasticity of anisotropic bodies to have at their
fingertips the basic material of this topic and to utilize it in
their investigations.

This book contains the research and investigations of the
author and some results obtained by other scientists.

The subject matter is laid out in the following way:

Chapter 1 deals with the general equations of the theory of elas-
ticity of an anisotropic body; Chapter 2 investigates the simplest
cases of elastic equilibrium; Chapters 3 and 4 examine the state
of stress of an anisotropic body bounded by a cylindrical surface
for which the stress does not vary along the generator; Chapter 5
investigates the state of stress of an anisotropic cantilever of
constant cross section deformed by a transverse force; Chapter 6
deals with the symmetric deformation and torsion of a body of
revolution.

This book does not pretend to investigate all the questions
of the theory of elasticity of an anisotropic body. Rather, it
gives an account of certain parts of the theory of anisotropic
bodies which have been studied, but not organized systematically.
The book does not contain investigations on the deflection and
stability of anisotropic plates because these questions are
covered in the book Anisotropic Plates. The problems of plane
deformation and generalized plane stress are discussed briefly;
the most important special cases are considered in connection
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with more general problems. We have not touched upon the problems
of the equilibrium and stability of anisotropic shells, as it is _
more appropriate to discuss this subject in a work connected es-
pecially with shells. We have not considered the dynamics of an
elastic body (with the exception of general equations of motion).
In all cases it is assumed that the deformations are elastic and
small, and the material satisfies a generalized Hooke’s law.

Thus, we shall not consider questions of plasticity and large
elastic deformations of anisotropic bodies.

The author has tried to make the exposition brief. When
excessively complex calculations are not involved, the explicit
formulas for stress, which can be used for calculations, are set
down. :

At the end of the book we have cited the literature which,
in addition to works which state special problems, includes
certain fundamental courses in the theory of elasticity. Numbers
in brackets in the text and the footnotes indicate the literature
cited in the references.

I am deeply grateful to T. V. Skvortsov for his assistance
in the calculations, in drawing the graphs, and in the technical
formulation of this monograph.

S. G. Lekhnitskiti
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Chapter 1 General equations of the theory of
elasticity of an anisotropic body

1. THE STATE OF STRESS IN A CONTINUOUS
SOLID BODY

In our study of the distribution of stresses and deforma-
tions in an elastic anisotropic body, we shall adopt the
universal standard which regards an elastic body as a solid
continuous medium.

The state of stress at any given point of a continuous
body is determined entirely by the components of stress in three
mutually perpendicular planes which pass through the chosen
point. The planes are usually taken perpendicular to the co-
ordinate directions of some orthogonal coordinate system. In
our study we shall use, for the most part, Cartesian and cylin-
drical coordinates.

Let us refer the continucus body in a state of stress under
the influence of some external force to a Cartesian coordinate
system x, y, z, and at a given point let us consider three planes
which are normal to the axes of the coordinates. The stress
which acts on each area 1s resolved into three components along
the axes. We denote the normal components (the normal stresses)
by the symbol o with an index which indicates the direction of
the normal to the area. We denote the tangential components
(the tangential stresses) by 7 with two indices. The components
of stress acting on an area normal to the x-axis are o, T s
T, . the components of stress acting on an area normal to the
y-axis are Teyr Oyr Tays the components of stress acting on an

area normal to the z-axis are Terr Tyor O, (see Figure 1). These



nine components define
the stress tensor at a

‘zw

given point:

o T T

x xy xz

T o T H
yx y yz

T o

zx zy z

the stress tensor 1is

Z always symmetric be-
. T =T ;T =
Figure 1 cause 1, xy’ zy
T ., T. =T_ _ (gener-
z xz zZx
aily, T.. =T.. where
1] ji

i and j denote mutually perpendicular directions).

Let us assume that the z-axis of the Cartesian system coin-
cides with the z-axis of a cylindrical coordinate system r, &, z.
The components of stress acting on areas normal to the coordinate
directions r, &, z are denoted respectively by: Ty Tgpr Typ
Tog 99 Too0 T Tg, 9, (see Figure 1); in this connection
=Tror Tie Bg* Tez = Tape

If we know the stresses in three mutually perpendicular areas,

rz’

Tor =7

we can always determine the stress which acts on any area passing
through the same point. We have the formulas:

X, = o, cos (n,x) +7  cos (ny) *7  cos (nz),
n = Ty, cos (n,x) to cos (ny) *7  cos (nx) , [1.1]
Z = T, cos (nx)t T,, cos (n,y) to, cos (n,z) ,

where X , Y , Z are components of stress which act on an area
with the arbitrary normal direction n.

With the aid of these formulas, we can find, by projection,
the normal and tangential components of stress acting on an ar-
bitrary area. For example, let the new Cartesian coordinate

’ !

system be denoted by x', , 2. The position of the new system
b Y Y P



Table 1. Direction cosines with respect to the first sys-

tem, x, y, z, 1s determined by

x y z Table 1 of direction cosines.
In this table a, = cos (x,x'),
z' o By 71 Y, = cos (z,y') and so forth.

By projecting Xx,, Y s sms
Zz: in the direction of the new

y a B Y :
2 2 4 axes, we obtain the components
, of stresses in the new coordi-
z Oy B 73 nate system (that is, in the
Y
areas normal to the x', y', and
2' axes):
o 2 + o0 B2 +oy?+ + h
O; O;al OyBI O;)& 2Tyzﬁfy1 2Tzzafyl
+
ZTxyocll,

L [1.2]
Ty = O 0504 +Uy'52’83 toyys t Tyz(/B273 * B37y)

Py tay,) sz(o‘233 T ab,) .

The expressions for o’ and O; are obtained by means of a
cyclic permutation of the indices ®, [ and ¥ in the first formula
of [1.2]. 1In the second formula of [1.2] the expressions for T;z
and T;y are obtained in the same way. The formulas for the transi-
tion from the system x', y', z' to x, y, z have the form:

= ' 2 + 1D + .2 + ] + ]

o oy toay Toay T a0, T2T a0,
!

¥ 2Txyd1a2 !

> [1.3]
_ & 1 (s 1

Tog = o Byt Uyﬂzyz o By, t Tyz(’52y3 T BYy)

+T;z(ﬁly3 +’83/)/1) +Tzlcy(/81’y2 +'827/1)



We derive the expressions for the remaining components also by a
cyclic permutation of the indices a, 53, v in [1.3].

Analogous formulas hold for other orthogonal coordinate
systems. In the special case of formulas of type [1.2] the rela-
tions between the stresses in the Cartesian and cylindrical co-
ordinate systems with the same z-axis are

: ; 3
o = o cos?f@ to sin? 6+ 27 sin 6 cos O
r x y Xy
o, = O sin? @ + o cos? & - 27 sin O cos O
x Yy xy
Tog = (O& —o0,) sin 6 cos 6 'rxy(cos2 6 - sin® 6)
e [1.4]
T = 7 cos & +7T  sin G ,
rz xz yz
Tg, = ~T,, sin 8+71 _ cos @,
z xz yz
o, B0, J

Here & is the polar angle measured from the x-axis.

The components of stresses in a continuous body in equilib-
rium under the action of surface and body forces satisfy three
differential equations of equilibrium. These equations expressed
in Cartesian coordinates have the form:

do . Brxy . or., fr - o i
3x ay Bz '
—’1+@+ “ty = 0 s [.5)
% 3y o ’ '
aTJA:Z y ao’z

- - +7Z = 0,

%  Jy o

~

where X, Y, Z are the components of the body forces (per unit of
volume).



