


Almost Sure
Convergence

WILLIAM F. STOUT

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Ilinois

1974

ACADEMIC PRESS New York San Francisco London
- A Subsidiary of Harcourt Brace Jovanovich, Publishers



CoPYRIGHT © 1974, By ACADEMIC PRESS, INC,
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE'REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by -
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 &

Library of Congress Cataloging in Publication Data

Stout, William F
Almost sure convergence.

(Probability and mathematical statistics)
Biblfography: p.

1. Random variables. 2..  Sequences (Mathematics)
3. Partial sums (Series) L. Title.
. QA2735.876 519.2'4 73-2075

ISBN 0-12-672750-3

AMS(MOS) 1970 Subject Classifications: 60F15, 60G45, 60G50, 60-02

PRINTED IN THE UNITED STATES oF AMERICA



ezl

y— g

Preface

Almost sure benavior of partial sums of random variables, the subject
of this book, has enjoyed both a rich classical period and a recent resurgence
of research activity. This is nicely illustrated by the law of the iterated
logarithm for partial sums, the subject of Chapter 5: Attempts to sharpen
Borel’s [1909] strong law of large numbers culminated in Khintchine’s
[1924] law of the iterated logarithm for Bernoulli random variables. The
Kolmogorov [1929] and the Hartman-Wintner [1941] extensions of Khint-
chine’s result to large classes of independent random variables were mile-
stones in the classical theory. Levy’s (1937, see [1954]) law of the iterated
logarithm for martingales, an important class of dependent random vari-
ables, was another major'adva'nce in the classical theory.

The modern period for the law of the iterated logarithm was started by
Strassen ([1964], [1965], [1966]) with his discovery of almost sure invari-
ance principles, his deep functional law of the iterated logarithm, and his

_ converse to the Hartman-Wmtner law of the iterated logarithm (this last

occurring, remarkably, a quarter century after the Hartman-Wintner result).
As Chapter 5 indicates, one of the characteristics of the modern period
has been an. emphasis on laws of the iterated logarithm for dependent
random variables.

Because of the rich history and current interest in the law of the iterated
logarithm and in other areas of almost sure behavior, it seems-desirable to
have a monograph which treats almost sure behavior in a systematic and
unified manner. This book presents such a treatment of the law of the
iterated logarithm and of four other major varieties of almost sure behavior:
almost sure convergence of partial sums (Chapter 2), almost sure stability
of partial sums (Chapter 3), almost sure stability of ‘weighted partial sums -
(Chapter 4), and recurrence of partial sums (Chapter 6).

Subdivision -into major topics within chapters is usually done on the
basis of dependence structure. For example, the law of the iterated logarithm
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vili PREFACE

for partial sums of independent random variables, which is developed in -
Sections 5.1-5.3 of Chapter 5, is such a major topic. The treatment of
each major topic starts with more elementary and usually classical theorems
and proceeds with 'more advanced and often recently established theorems.

Since the book’s viewpoint is probabilistic, certain mathematically

' important topics, although logically fitting under the umbrella of almost
sure behavior, are omitted because they are not probabilistic in nature.
E'xamples of such excluded topics are the almost everywhere convergence
of Fourier series and the pointwise ergodic theory of operators in'L,, spaces.
Topics of probabilistic interest have often been excluded as well, thereby
keeping the book from being too long. ; ;

The book was developed from a course on almost sure behavior given
by the author. This course was given as a sequel to the basic graduate level
probability course at the University of Illinois. The book contains ample
material for a one semester course. It assumes familiarity with basic real
analysis and basic measure theory (such as provided by Royden’s “Real
Analysis”) and with basic measure theoretic probability (such as provided
by Ash [1972, Chapters 5-8] or Chung [1968]). The book should also prove
useful for independent study, either to be read systematically or to be used
as a reference. ;

A glossary of symbols and conventions is provided for the reader’s
convenience. This should be especially helpful when the book is used as a
reference rather than systematically read. Results are numbered by chapter
and section. For instance, Example 2.8.11 is the eleventh of the examplés in

~ Section 8 of Chapter 2. Chapters are somewhat independent; hence each
may be read without extensive reference to p‘revious chapters. Exercises
are included to help the reader develop a working familiarity with the
subject and to provide additional information on the subject. Numerous
references are given to stimulate further reading.

. I especially thank R. J. Tomkins for reading the entire ‘manuscript,
making many valuable suggestions, and spotting numerous errors: I thank
R. B. Ash, J. L. Doob, and W. Philipp for reading portions of the manuscript
and making valuable suggestions. Carolyn Bloemker’s excellent typing was
greatly appreciated. ) .

The writing of this book was partially supported by the National Sci-
ence Foundation. : :



Glossary of Symbols
and Conventions

R, 7, pP)
EX, E(X)
{Xi,i> 1}
{Sp,n>1}
AC

A=B

AAB
AcB
A implies B
a, —~a

FB{Y,,x € A}

Occurrence

as;

{Z%,n > 1} adapted to
{Yu,n>1}

{Yn, P, n> 1} adapted
-stochastic sequence,

Zo

I(4)

i.o.

Ay io.

. #(X)
X+

Underlying probability space.

Expectation of X

Basic sequence of random variables

Sp = Eln-l X;
Complement of A4

P[A nB‘]+P[A=nB]—0

otherwise
(4 nB‘)U(A‘nB)
P[ANB]=0
A<B

unless explicitly stated

| a| = oo not allowed, unless explicitly stated otherwise

A implies . ..
Covariance of X and Y
Variance of Y

n-dimensional Euclidean space

One-dimensional Euclidean space
Infinite-dimensional Euclldean space

Borel sets of R,
Borel sets of R_,

o field generated by {7,,« € A}

FiXz, Xz, i)

See parenthetical remark, p. 1

Almost surely

P increasing o fields, < &%, Y, is &, measurable

Same .as above

&, 2}

Indicator function of event A4

Infinitely often
n :c-,-l U :o-k An
Median of X

max(X, 0)

#!



X

X_
Ix]
Px
Fx
a(X)

ap ~ b,

a, = o(by,)
ap = O(b,)
Etn-nu (')

L, .
[X € 4]

logs x

GLOSSARY OF SYMBOLS AND CONVENTIONS

—min(X, 0)

Greatest integer function of x

Probability measure induced on (R, %) by X

Distribution function of X

Constant in definition of generalized Gaussian random
variable

lim a,/b, = 1

lim a,/b, =0
- lim sup a,/b, < o

=0 3 ? _
Banach space of functions with pth absolute moment

o] X(@) € 4]

Indicates definition; e.g:, A(x) = x?
log log x ‘
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CHAPTER 1

Introduction

1.1. Delineation of the Subject
\ ;

The purpose of this chapter is to introduce the reader to the subject
and content of this book in some detail. The basic setting throughout the
book is that of a probability space (.Q,' &, P) with a sequence of random
variables, henceforth referred to as the basic sequence and denoted by
{X;,i = 1}, defined on (2, & P). Let S, —= YL Xiforn>1.{S,,n> 1}
is referred to as the sequence of partial sums.

In this book we shall study those events whose occurrence is determined -
by the values of infinitely many S,. (The use of the word “occurrence,”
although most convenient, can cause confusion. Recall that in probabilistic .
terminology each'w € 2 is an “outcome” of an “experiment.” Given a
particular outcome w € £, the occurrence of an event ‘A simply means
that w € 4. Thus occurrence simply expresses membership in a set.) This
remark should be made precise: For each n > 1, let &, be the o field
generated by {X;, | <i < n}. Thus 9, consists of all events of the form
[(Xi,X,, ..., X,)e Blas B ranges over the Borel sets of R,, R, denoting
an n-dimensional Euclidean space. Let ., be the o field generated by the
%,. Thus Z,, consists of all events of the form [(X;, X5, . X ) é B]
as B ranges over the Borel sets of R, R, denoting an infinite-dimensional
Euclidean space. Of course, .., can also be described as consisting of all
events of the form [(S,, S,, ..., S,,...)e B] as B ranges over the Borel
sets of R.,. From tha viewpbint of the book this last is a more natural
way to view %, . Events of %, are of two types:

Definition 1.1.1. An event which is a member of %,, for some
finite n, is called a weak, event. An event which is a member of 2., and
which is not a weak event is called a strong event. _ |

1



2 . INTRODUCTION Chapter 1

The occurrence of a weak event is determined by the values of only
- finitely many random variables of the basic sequence, whereas the occurrence
of a strong event is determined by the values of infinitely many random
variables of the basic sequence (equivalently, by the values of infinitely
many random' variables of the sequence of partial sums). For example,
for each integer n, [S, = 0] is a weak %event because, for a given w € 2,
the question of whether or not w € [S, = 0] can be decided if the values
of X,(w), X,(w), ..., X,(w) are known. Similarly, [S, = 0 for infinitely
many. n] is a strong event since, for a given w € 2, for no finite n does
knowing the values of X;(w), X,(w), ..., X,(w) determine whether w
€ [S, > O for infinitely many n]. "
Rephrasing the statement begrnmng the preceeding paragraph in the
light of Definition 1.1.1, in this book we study strong events. Given a strong
‘event A of interest, the most important problem is to find conceptually
and computationally su.nple conditions which imply that P(4) =1 (or 0).
In addition, we often obtain important results in which a strong event 4
can satisfy 0 < P(A) < 1. Then it is an important problem to find events
B of interest for which B= A, A < B, and B < A. For example, (letting
EY denote the expectation of a random variable Y) if the X; are martingale
differences with E sup | X;| < oo, then

[sup S, < oo] =[S, converges]

can be proven. (Here and throughout the book, convergence means
convergence to a finite limit and equality of two events means that two
‘events contain the same outcomes with the possible exception of a null
event.)

We will look at the probabilities of weak events only when the results
obtained are useful in studying the probabilities of strong events. For
instance, that will be our only interest in the central limit theorem. In study-
ing the probabilities of strong events two types of assumptions are usually
made concerning the basic sequence. First, the random variables of the
basic sequence satisfy a dependence relationship, such as being orthogonal,
being independent, being Markovian, being martingale differences, etc.
Second, the random variables satisfy an absolute moment condition such as

S EX?<oo, ¥ E(X;— EX; /it < oo,
1=1

=1

Esup | X;| < oo, supElS,,|<oo,

etc. A third type of assumption sometimes imposed is that the random
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variables of the basic sequehce satisfy a stationarity condition such as being
weakly stationary, identically distributed, strictly stationary, etc. ;
These types of assumptions combine to impose bounds on probabilities
of weak events. Since the weak events form a field which generates the
o field of strong events %, , it follows by the Carathéodory extension
theorem of measure theory that specification of the probabilities of the
weak events uniquely determines the probabilities of the strong events.
Typically, weak and general assumptions such as those discussed above
impase bounds on the probabilities of certain weak events, which, in turn,
imply that certain strong events of interest occur with probability zero
or one. ' . ,
For example, Kolmogorov’s strong law of large numbers for inde-
pendent random variables states that the X ; being independent and

Y, E(X; — EX))*i < oo
=1

together imply that

P[(S, — ES,)/n—0 as n— co] = 1.

1.2. A Brief Chapter by Chapter Outline of Topics Covered -

It seems appropriate to outline briefly the chapter by chapter organiza-
tion of the book, touching on certain h'ighlights of each chapter. In order
to accomplish this, knowledge of some advanced probability concepts is
assumed (e.g., martingales, Markov processes, mixing sequences). State-
ments concerning unfamiliar concepts should be passed over with the
knowledge that such concepts will be fully developed at the appropriate
places in the book.

In Chapter 2, the event 4 = [S, converges] is studied. Of particular
importance is the almost sure convergence of S, (that is, P(4) = 1). A
variety of dependence structures for the basic sequence are analyzed in
Chapter 2, these structures usually implying that the X, are orthogonal.
As successively more restrictive assumptions are made concerning the de-
pendence structure of the basic sequence, stronger and more specific results
concerning the almost sure convergence of S, are established: Suppose
ES,* < oo for each n > 1. Orthogonality alone guarantees that

Y (log i) EX;? < co
=1
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i i
implies S, converges almost surely. Under the further restriction that
{S,,n > 1} is a martingale,
o { ;
Y EX? <oo (indeed sup E| S, | < c0)
=1
implies that S, converges almost surely. Under the still further restriction
that the X; are independent with EX; = 0 for each i > 1, Kolmogorov’s
three series theorem characterizes the almost sure convergence of S,
terms of the convergence of three numcrlcal series. A major part of Chapter
2 is devoted to this progressive restricting of the assumptions concerning the
dependence structure. The case of independence, for which most of the
major results are classical, and the martingale case, for which many of the
majorresults are the consequence of recent research, both receive particular
emphasis in Chapter 2. In the martingale case questions concerning local
convergence are carefully examined. For example,

[Z E(X; %, Xz, e L co] — [S, comvergia]
t=1 i :

is shown under the assumption that the X are martingale differences with
E sup X;* < oo. The question of the almost sure convergence of S, bemg
implied by absolute moment conditions on the S, without any particular
dependence structure assumed for the basic sequence is analyzed also.
Several applications to real analysis are made in Chapter 2. For example,
several results about the almost evervwhere convergence of Haar series are
shown to follow easily from martingale convergence results.

Even if a sequence of random variables {T,,n > 1} is almost surely
divergent (that is, P[T,, converges as n — co] = 0) it is easy to show that
there exists constants a, — oo and b, such that T, is stabilized; that is
(T, — b,)/a, converges almost surely to zero. In Chapter 3, the stability
of S, is studied when S, is almost surely divergent. The case when the X
are independent and identically distributed is studied first: As successively
higher absolute moments of X, are assumed finite, sequences {a,,n > 1}
converging successively slower to infinity are shown to stabilize S,. Ac-
cording to Kolmogorov’s strong law of large numbers for independent
identically distributed random variables, if E| X,| < oo, then

(S, — nEX;)/n -0 almost surely.
If, in addition, E| X, [? < oo for some | < p < 2, then

(S, — nEX)/n''? -0 almost surely.
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Let var Y denote the variance of a random variable Y. If, in addition,
EX,® < oo, then

3 (S, — nEX;)
% | Imost ly.
lm sup [2n var(X,)log log(n var X;)]¥2 — s S -

Stability is also studied when the X; are independent but not necessarily
identically distributed, when the, X; are martingale differences, when the
X; are strictly stationary, when the X; are mixing, when the S, are Mar-
kovian, and when the S, are restricted by absolute moment conditions

" without any particular dependence structure assumed for the basic sequence.
One such important result is the pointwise ergodic theorem: If {X;, i > 1}
is strictly stationary and ergodic with E | X; | < oo, then

(S, — nEX,)/n—0 almost surely.

A second important result is given by: If {X;,i > 1} is a martingale dif-
ference sequence with

Y E| X;|?/i4?* < oo  for some p=>2,*
=1
then
S,/n—0 almost surely.

A third important result is given by: If {X;,i> 1} is an independeht'
- sequence with E | X; |t < K < oo for some 8 >0 and ail i > 1, then .

(S, — ES,)/n—0 almost surely.

As discussed in the preceding paragraphs, the almost sure convergence
of (S, — b,)/a, to zero is studied in Chapter 3. The more general problem
of the almost sure convergence of centered weighted sums T}, =X
—b, to zero is studied in Chapter 4. (The a,; are the weights and the b,
are the centering constants.) The purpose is to prove almost sure con-
vergence results for as broad a class of coefficient matrices -{a,;} as pos-
sible. This is .in contrast to Chapter 3 where {a.} is always, assumed to
have a specific structure (for example, a,;, = n~! for k <n, a,;, =0 for
k > n). The case when the X; are independent and identically distributed is
studied most, but the cases when the X; are independent but not necessarily
identically distributed, when the X; are martingale differences, when the
X; are strictly stationary, and when the X; are strongly multiplicative
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‘receive attention too. The following result is typical of Chapter 4: Let

; ,’,,,S for some C <oco, >0 and all >,
=1 )

Cn~
< Ck- for some C<co andall n>1, k>1,

and the X; be independent identically distributed with EX, = - 0 and EX,?
< oco. Then :

; @, X —0  almost surely as 7 — oo,

In the spccxal case of weighted averages (T, = YL, a;X,/TL, a;) with
strictly positive weights, more precise results 'are shown. For example,
{Xi, i > 1} independent identically distributed with E | X, |logt | X; | < oo,
EX, = 0, and {a;, i > 1} uniformly bounded implies T, — 0 almost surely.

In Chapter 5, the law of the iterated logarithm and closely related
results are studied. The case when the X; are independent is studied most.
For, this case the classical exponential inequalities approach is used to
derive Kolmogorov’s well-known law of the iterated logarithm. Strassen’s
almost “sure invariance principle is used to derive the Hartman-Wintner
law of the iterated logarithm. One of the most interesting results of Chapter
5 is this Hartman-Wintner law of the iterated logarithm combined with
its converse due to Strassen: Let the X; be independent’ identically distrib-
uted. Then

Sn

55 ¢ g log sl ) o alm.ost surely for some 0 <c¢ < oo

lim sup

if and only if EX, = 0.and 0 < EX,® = ¢ < oco. This delicate result about
the magnitude of the asymptotic fluctuations of the S, is typical of the
results of Chapter 5 in that it contains remarkably precise information and
is quite difficult to prove. Besides the case of independence, the law of the
iterated logarithm is also studied when the X; are martingale differences,
mixing, and strongly multiplicative. In the case of mixing sequences, a
central limit theorem with an error estimate is used to derive the needed
probability inequalities.. This, along with Kolmogorov’s and Strassen’s
approach referred to above, is one of the major approaches for deriving
laws of the iterated logarithm. A solution to the problem of finding nec-
essary and syfficient conditions for the strong law of large numbers in the
case of independence is given also; this is a by-product of the study of the
exponential inequalities mentioned above.
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Given a sequence of positive constants {a,,n > 1}, let T, = ¥, Xi/a,
for each n > 1. In Chapter 6 the recurrence of {7,,n > 1} and related
results are studied. The most important problem considered is the de-
termination of the recurrent states of {S,,n>1}. That is, for which
c€ R, does

P[S, € (c— ¢ ¢ + &) for infinitely many n] = 1

hold for each £ > 0? This qlfestion is studied when the X; are independent
identically distributed and more generally when {S,, n > 1} is Markovian
with stationary. transition probabilities. The question is also studied when
the X; are independent identically distributed random vectors taking values
in an n-dimensional lattice. An important result of Chapter 6 is that
the X; independent identically distributed nonlattice random variables with
EX, = 0 implies that each real number c is a recurrent state of {S,,n > 1}.
Assuming that the X; are independent identically distributed, the determina-
tion of the recurrent states of {T,,,n>1} for a, = n*, 0 < a <1 fixed,
is studied. For example, EX; = 0 and a, = n"/? implies that —oo and oo
are recurrent states of {7,,n > 1}. That is,

limsup S,/n'? =co  and  liminf S,/n"? = —co

almost surely. Assuming that the X; are independent identically distributed,
certain questions concerning the amount of time that {S,,n>1} spends
in various subsets of Rl are also studied.

1.3. Methodology

Certain remarks about the methodology used in proving results about
the occurrence of strong events seems appropriate. Typically, prpofs tend
to be a mixture of two kinds of analyses. First, magnitudes of probabilities
-are estlmated using mostly elementary techniques of classical real analysis.
.The 1nequaht1es of Chebyshev, Holder, and Jensen, integration and summa-
tion by parts, splitting integrals into pieces, Taylor series expansions, etc.,
are heavily drawn upon.-Second, the clever use of certain probabilistic and
measure-theoretic techniques translate these estimates of probabilities into
. statements about the probability of occurrence of strong events of interest. -
The Borel-Cantelli lemma, truncation of rangom variables, centering at

means or medians, stopping rule techniques, etc., are heavily drawn upon.
' Combinatorial arguments are sometimes useful. Complex analysis and
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functional analysis, although occasionally used, do not play a major role.
One of the keys to ‘understanding the. choice of methodology is that prob-
abilities are seldom computed but rather estimated. Indeed, the generality
of typical hypotheses (for example, X; independent identically distributed
with EX; = 0) prohibits the compligation of probabilities of weak events.

In many proofs a major step is the establishment of a maximal inequality.
For example, {X i» 1 > 1} orthogonal implies that

n
E[max S:*] < (log 4n/log 2)? Y EX? for all n>|,
i<n 3 * :

=1

an inequality which plays a major role in the analysis of the orthogonal
case.

Often certain technigues become associated with a particular dependence
structure. For example, stopping rule techniques play a major role in the
study of the local convergence of martingales and truncation plays a major
role in problems where the X; are independent.

It is a major purpose of this book to stress methods of proof as well as
' present interesting results concerning almost sure behavior.

1.4. Applications to Fields outside Probability

Besides being of intrinsic interest to probabilists, -the results presented
in the book have applications to number theory, real analysis, and statistics.
In this section we sketch three such applications. _

The most famous example of application to number theory is the result
that except for a set of Lebesque measure zero, all real numbers in the unit
interval are normal in the sense that they have decimal expansions in which
the digits 0, 1, ..., 9 occur with equal limiting relative frequency. This
follows immediately from Kolmogorov’s strong law of large numbers for
independent identically distributed random variables. '

Certain probabilistic results concerning almost sure convergence have
application in real analysis to the almost everywhere convergence of certain
orthogonal series of real functions. For example, since the successive
partial sums of a Haar series form a martingale satisfying a certain regularity
condition, certain rather deep results concerning the almost everywhere
convergence of Haar series follow rather easily from the study of martingale
convergence presented in Chapter 2. Results in probability theory (such
as the law of the iterated logarithm) sometintes suggest results for certain
classical types of orthogonal series even when the probabilistic proofs do



