gurpemsns EEd

E i BEER'Y,

urviving
Object—Orlented Projects

A¢

| (2) Alistair Cockburn %%

&EpAa & & B i

.science P.com

BHETARE FEMS

X SRR B Sk AN

(% E R

Surviving Object-Oriented Projects

(£) Alistair Cockburn %3

4 & & K
Ik 5

M5 01-2003-7663 S
= Lo
A E N

ABISR T H X ZREFRBMEA S EENTAEAR, ORERTH. . ARKEUR
FRA R T T R R B SRR B . B ERME A RO SR, LA BN A SRR
ST RAEIH PR FEE A A, BT AR .

AP FEE NERM TR KT R E RO AEA, ol 0 G ol 5 I s S B K T
HKRFEHI BB .

English reprint copyright©2003 by Science Press and Pearson Education Asia Ltd.

Original English language title: Surviving Object-Oriented Projects, 1¥ Edition by Alistair Cockburn,
Copyright©1998

ISBN 0-201-49834-0

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

SURTHEAREHESN (RAafhEEE. ®NENTREMFEGEHmX) HERT.
Z B3N Pearson Education GFAEHHE HRUERED BOLHIhin®, AHEESRHE.
B+ £ R 4 B (CIP) 34 iR

X BRI H K4 3= Surviving Object-Oriented Projects / (38) # 5 HA (Alistair Cockburn)
E— R, b5 B IR, 2004 '
(R IREFEA
1SBN 7-03-012489-8
1.3, L% [NLEEMNSRES—HKEFE—RL V.TP311.52

o EAR A B 51 CIP BB (2003) ;ﬁ 103053 &

NG BRI/ RS AR
Firepd S AR/HEiki CRAE

M 2 2 K & HIK
LRI EARMAL #1605
B S 5%: 100717
http:// www . sciencep.com
&% ® 4 5 EK
BEHBRART K BFEBERs
*
2004 521 B — M A 787X960 1/16
2004 % 1 A5 — K] Ef3k: 17
EN%. 1—3 000 FH. 260 000
Effr: 28.00 T

(WHEPEARAE, RUEAFTARHD

ZEHEE

CERPETRE” R 20 AL 60 SEACRENXHTIY “BRAEAL” TIRBERIEES. &
B Rl TRML I IERE R B TR & R, AR OLTE Rkt 2 P k=i . Srb 2 LA
THENEYE. Ser, TR REE RS EEN L. BAX -SRI, BIF
FFR A M 60 FRZEL TR ST LAY AR, SR 70 FARMEEL TR
PAE. 80 AWM SRR Bk, HBEIMAFIRATIE MR ITE, S5 T RANE
A, FENARRIR R, ST E B R R R T 25 RGN R 1) A R IEETUH
W75, SIRTTRATESERERE. €770, EAMma S MHAmoaRes T
M A — AR A R, FEAE e PR TAY KRR . XERATNZE R
(¥4 24 3 & W AR (Pearson Education Group) 3£ T —463k ¢k T8 5 F ik RKAEHRE
MR B EN R, DAL E AR R R T M E SN SRR R R AN, S EE MR
FIERAMAS . LUF A BN AE R ERAE, DUESRE R

¢ Internet |2 R HIA R, WA AREBORBMEBEM A, LRI RDIHEE

AR AR F S B M AT H07= & . Scott E. Donaldson F Stanley G. Siegel & 1E4 3 #)

CRRINBIERAETTRY (Successful Software Development) — N “HKEREF K IEEN"

X -k, 5IAT —DRET AN TR SRR — R TIEABL (Systems
Engineering Environment, SEE) . RGN BB RIBEAER: HERMFITK
SRS, URAHATFELIERAEAR. X —HE, B RdBEFXRIA
FRMLRR) 2% Foh O B bl BUEAT T BRI, IR A TT R ABA R 2RI #H »

B TR HERER, EXBHA T —H RS RLTHRTHERNE
Mo PEBTNRERIC RIS, - RACH TRATHE KM TIENET 4 . Ralph
R. Young H9 ¢EHM TR (Effective Requirements Practices) — 15 WEBFIEAH
AR AR T % BRI H SO & Bl) B, B B AT LI B R R R R R A
FOHE B4k R AN I RETE BB R M AR, AESEBR PR TR S Bk ok, IEmIA
Bo & Fh R, AT IR IR 0 H A), CRIEZE AN P &P R sk B
13BN 15 B L .

B RN RERGHALE T HEE & RARKEER, HRXSHME, B4
R FT AR XREE FHEH T AR BIFAME. Mary Shaw #1 David
Garlan f) (AR R E5H9) (Software Architecture: Perspectives on an Emerging Discipline)
— At L F R BT A A I RGBT BARHHT T AT AT ER . BIG/EE Xt
AR RGN R BRI R FO St e e m VR P A 0 B0 AR, AH(E BRI T RE AN

PIREE HER: S IFR NG AR B i A AR o B AR, H AR IX L
B THE AV R B H A R F/ENge NP 3] -Se g HMEIy, M
BEPIMAR T BRARLRALLEHM, TARGEZ A RSO L B K777 %1
BN S, APaILMERN “AFE ARG IRFENERS, BUE 2 K41 g “Kt
wit” RN R .

T AL DA E K M AT H A B A KU, Joel Henry B CfEIH 4
Y (Software Project Management: A Real-World Guide to Success) NiZE AT
R EM . BPiRid THREIEH MU EARRESR: A IR, TRAFNER, I
i F AR WU el LLG R A& 70k, 0 H SE RS B R RO . EEAAN
ATV THEEZE, METEENE —-FHEL e Bh AR EA, &AL
FLZ BT T BRI . R X e g ig sk W N LTS 24 & 5 #
BETE, HAREMMREACEREE, HESBAESTRBESNER.

PR D IR G, KRB E LRI, MATAEEY 8, M ER
FEAS o SR A [R) % VP 5) B RATAr] i B B AR JT R FR A T BT, SRS i O T b B
HINE TN REE R R EBESE . Karl E. Wiegers] CBREEFRIZAIPHED (Peer Reviews in
Software) FEEFMXGEMFTKRMEEH. APENATRERIOFFNLSE, WEY
R &P OEAAEE E AL VE e A AR R AR R Ty o 5P KR I B K JT 5] A a8 4 %
EHRA TR EFRIAT T 18T N EEEE NS, A DBl
RIBEUR S B EI R PEET TR, SGEIF RN SR VA0, B £ 3G AR AS B R B IO A A7 b

T) P R BRI N 4Bk i, 17 57 bt [A e A 22 190 5 o 76 T H Bk £ e
AV T 2 R A BB AR S AME L. WEEATE T S, FHEERRNBRE
HILW . AEATIERE DX & PG LR N B Y, XA A I fSs. LTI
LA REARNBIRE, B FI50E S P 37 BRI T & e = R 4800 4
WEAY . Alistair Cockburn) XF G AT H KAETEWY (Surviving Object-Oriented
Projects) — i LA KB L 5B SRR 2256 7] 32 F SR 46 i Th & BR 6 SRR 30 I 1% 92 i
AN, FEBHEEE PO T RSNk, AR E IE R T R AR . 1R
HE T 0 BRI E BRSO E ARG, RS R) e e, P, A R HE LA B 1Y 5L
SEEE R AT TG, R T ATEREMMR R TR ST AN EST SRR F A PR
ME, XHE -AMHUEENSH, a7 LU K #A

PLEBLE HatXEZ A A B KB R, FHERBNE, XREABFE DEEH
MR, BERMG TREMEARE, DERILEZHNITRESHIE, BITBHL
SRR E 2 T BBt k. g T IX AT H T A A sl Ak R B A
BRI, BAXEZ.

% #
2003411 A

Foreword

Object technology is new, powerful, intriguing, and frankly, sometimes
daunting. Even if trade rags shout of object ubiquity, your programmers
clamor for cool object tools, and your old ways of doing things seem stale,
it still is a big, big decision. Whether objects are right for your organiza-
tion and project hinges on a gritty assessment of your ability to use
objects and whether introducing object technology solves more problems
than it creates.

One question on the minds of veteran managers is whether their
prior experience rolls over to this new object development territory.
Indeed, managing objects isn’t all new stuff. Object management means
managing peopie and processes, taking measured risks, and recovering
from unexpected problems. To successfully employ objects, you need a
clear understanding of your people, their capabilities, their roles, your
development process, and the type of project you are undertaking. It also
means taking seriously this business of incremental and, most likely, iter-
ative development. The way to acquire new skills is through practice,
practice, and even more practice. A one-shot development cycle doesn’t
give you time to recover from your mistakes.

Alistair Cockburn sheds light on incremental and iterative develop-
ment processes that would benefit any development project regardless of
its technology base. But object technology, which Alistair points out as
being primarily a packaging technology, comes ready equipped with tools
that help build neat packages—encapsulation of data and function in
objects, and reuse through composition and class inheritance.

Foreword

In this book, Alistair tackles the subject of managing, staffing, and
building a learning organization. In so doing, he doesn’t pander to object
hype. He doesn’t pull any punches—he is not a fan of textbook methodol-
ogies that ignore process, upper-CASE tools that perpetually show prom-
ise but don't deliver, or overly complex languages or solutions. In fact,
while letting the air out of the object-hyped balloon, he does an admirable
job of stating where objects work well, and more important, how to do so
without having to take an all-or-nothing plunge.

I wish you many successes on your development path, and hope you
not only survive but also thrive as you embark on your journey.

Rebecca J. Wirfs-Brock
October 1997

Preface

If you are thinking of starting, or have already started, an object-oriented
(00) project, and want to know what you are up against, this book will be
of use to you. Organizations that have successfully made the transition to
object technology claim significant time-to-market reduction. Developers
say object orientation is a fun way to develop software.

There is no shortage of literature on the subject; however, the press
has made so much of object technology that it is hard to sort out exagger-
ations and selective reporting from the actual experience one can expect.
Speakers rarely seem to want to name the actual costs of making the
move to objects, perhaps to avoid scaring away future newcomers.

There is, therefore, a lack of information on what sorts of unpleasant
surprises await one when starting an QO project, and what to do about
them. It is this lack of information that Surviving Object-Oriented
Projects: A Manager’s Guide addresses.

SCOPE

This book covers issues I have found in several dozen organizations that
are doing object-oriented projects. From failed efforts, we learned specific
difficulties; from successful projects, we learned how to get around the
difficulties.

The early reviewers of this book unanimously said that it takes several
projects to apply the lessons. They said that people on their first 00
project are not sufficiently aware of the issues to detect them, are not yet

xiii

xiv

Preface

open to suggestions, and cannot set aside old habits and thinking pat-
terns. It is my hope that you can prove them wrong, that you will succeed
on your first, or your second, project by paying attention to the lessons
from other people’s experiences.

This book is not a primer on object technology, nor is it a primer on
object-oriented design techniques or of macro- or micromanagement. It
is not a technical review of the literature, nor a cataloging of project
types. It addresses the numerous, specific topics for which an answer can-
not easily be found in the literature, or the obvious answer does not work.

The information in this book is based on personal project experi-
ences—my own, those of people I have interviewed, and interviews I have
read. Since writing the early version, I have had the chance to see these
ideas applied to development of many kinds of systems, from non-object-
oriented systems involving mainframes, COBOL and assembler, to client/
server and web-based systems.

In this book, I identify topics, point out hazards, and name a workable
strategy taken from a project that successfully cleared the hazard. The
hazards and strategies are collected at the back of the book in Appendix B,
Crib Sheets.

For readers interested in an introductory companion to this book, I
recommend David Taylor’s Object Technology: A Manager's Guide, Second
Edition (Reading, MA: Addison Wesley, 1998). For extended investigation,
I suggest Steve McConnell’'s Rapid Application Development (Microsoft
Press, 1996).

AUDIENCE

Surviving Object-Oriented Projects: A Manager’s Guide is intended for the
busy professional. Here is a reading strategy for four types of possible
readers:

1. The executive scanning for impact to the organization. Read the
Preface and the first two chapters. These take you through concepts,
project histories, expectations, and costs. If you are interested in the
next leve! of depth, skim the setup issues involving project selection
and staffing, and the chapters on large projects. At that point, you
may wish to give the book to the project manager.

2. The manager before starting on a project. Read Chapters 1, 2, 3,
and 5 of the book. These cover expectations, project setup, and incre-
mental and iterative development. Then look through the list of strat-

egies (Appendix A) and hazards (in Appendix B) at the back of the
book to get a sense of the total set of issues.

. The manager on a project. The primary audience for this book is
the manager, working with the technical lead, on a project. Some
issues are technical enough to require terms of object technology.
You, the project manager, may find that the technical lead will bring
these problems to your attention or will help you work through them.

Skim the entire book to get the nature and location of topics.
When working on the project, look up particular topics as they occur.
The chapters are organized in roughly the order topics usually show
up and need to be dealt with. Reread Chapter 5 about making correc-
tions before each increment.

. The project’s technical leader. Use the book to help your manager
understand certain issues, such as organizing teams, developing iter-
atively, and resisting unproductive tools and activities. I have added
technical depth in a few areas where a project hazard lurks and there
is no simpler way to carry through on the discussion.

Among these are: simplistic modeling of the business (sometimes
passing under the name of “analysis”), overstaffing at the beginning
of a project, and false productivity measures. For some issues, it is up
to you, the technical leader, to work with the arguments in the book
to convince other developers and the management team to adopt a
sensible direction.

I have included an extended section on C++ because it is my carefully

considered opinion that C++ represents an additional hazard to the sur-
vival of a project. If you favor using C++, read through this section and
deal with the issues to ensure your project’s success.

ORGANIZATION

The book has eight chapters and two appendices, roughly matching the
chronology of encounter with the issues.

o Chapter 1 summarizes and introduces sucess and failure factors, and
defines terms you will have to become familiar with.

« Chapter 2 is a reality check. What expectations do you have about
object technology, and how should you adjust those expectations? The
chapter contains stories about a dozen projects, which are referred to
throughout the book.

Preface |»v

xvi

Preface

chapter 1, 1

« Chapter 3 deals with selecting and setting up a project. This is the
best place to work on survival, even if survival means walking away
from the project. It covers all the standard issues of staffing, training,
tool selection, methodology, legacy systems, and the like.

o Chapter 4 covers some basic issues you will encounter when running
the project: methodology, estimates, plans, milestones, measure-
ments—and design.

o Chapter 5 deals with the inevitable corrections you will have to make.
I start by citing my favorite project, which started dismally and then
was turned around. From this project, we can learn a great deal about
fine-tuning. You will have much tuning to do; do not feel bad about
making changes during a project.

o Chapter 6 is written as a reflection on the first five chapters. You can
pretend that you have just finished your project and are giving advice
to another person who is about to start a project. What would you
highlight for him or her? Here is where you can get hindsight in
advance.

o Chapter 7 addresses organizations that have safely made it to the
point {or declared themselves at the point) of committing large num-
bers of their staff to using object technology. There are new costs and
new dangers lying in wait for those who move on to larger projects.

« Chapter 8 is another reality check in which I compare the contents of
the book to a real project. It opens the topic of organizational culture
in overall software success.

« Appendix A is a collection of 12 success strategies presented in a med-
ical diagnosis metaphor.

+ Appendix B is a summary—a “crib sheet"—to copy and tape to the
wall as your daily reminder about the basics of an object-oriented
project. A condensed version is printed on a card at the back of the
book. :

Throughout the book, the topics cross-reference each other exten-
sively. To keep the reading uncluttered, the links to other pages are noted
in the margin with a page number, as shown here.

Your project’s survival depends on developing your insights and
reflexes. To help you develop them, 1 use material taken primarily from
first- and second-hand experiences, my own and those of the many people
I have interviewed. I devote space to a few published papers, which were
carefully done and provide insights. They are noted in footnotes or in fur-
ther reading sections in some of the chapters.

PLACE IN THE CRYSTAL BOOK COLLECTION

The Crystal collection highlights lightweight, human-powered develop-
ment of software. Crystal works from two basic principles:

+ Software development is a cooperative game of group invention and
communication. Software development improves as we improve people’s
personal skills and improve the team’s collaboration effectiveness.

«+ Different projects have different needs. Systems have different charac-
teristics, and are built by teams of differing sizes, containing people
having differing values and priorities. It cannot be possible to describe
the one, best way of producing software.

The foundation book for the collection is Soffware Development as Coop-
erative Game. It works out the ideas of software development as a cooperative
game, of methodology as a coordination culture, and of methodology famn-
ilies (categorized in colors: clear, yellow, orange, red, and so on). It separates
different aspects of methodologies: roles, techniques, activities, work prod-
ucts, standards, and so on.

Some books discuss a single technique or role on the project, and
some discuss team issues. Surviving Object-Oriented Projects is one of
the latter. It presents some of the projects that helped me see the primacy
of people in developing software, and includes ideas for working with people
on a team. It contains a brief description of a Crystal/Orange methodol-
ogy, aimed at IT projects of 25-50 people. It goes through the issues that
affect many projects, issues ranging from selection of technology to staff-
ing to scheduling strategies. As with all the Crystal collection, this book is
self-contained in the topics it addresses.

Preface

xvii

Acknowledgments

I thank the nontechnical people around me: Kieran, Sean, Cameron,
Deanna. I now know why so many authors thank their families. Thanks
also to the people at Beans & Brew, who provided good coffee, a good
atmosphere,jand good conversation,

As Plato said:

Only if the various principles—names, definitions, intimations and per-
ceptions—are laboriously tested and rubbed one against the other in a
reconciliatory tone, without ill will during the discussion, only then will
insight and reason radiate forth in each case, and achieve what is for man
the highest possible force. . ..

This book received much benefit from the testing of principles and the
“rubbing together” of ideas in conciliatory tone and without ill will. For
that I thank the following individuals:

« Bruce Anderson, IBM Object Technology Practice
« Carol Burt, President, 2AB, Inc.

& Dave Collins, Outback Software, Ltd.

+ Anton Eliens, Vrije Universiteit (Amsterdam)

+ Adele Goldberg, Neometron

+ David Gotterbarn, East Tennessee State University

IFrom Plato’s 7th letter, cited in translation from Géranzon, B., Florin, M., Dialogue and
Technology: Art and Knowledge, p. 46 (London: Springer-Verlag), 1991.

xXviii

Brian Henderson-Sellers, Swinburne University of Technology
Jeremy Raw, Independent Consultant (Durham, NC)

Arthur J. Riel, Vangaurd Training, Inc.

Cecilia Shuster, Independent Consultant

Dave Thomas, IBM (formerly of OTI)

Daniel Tkach, IBM Consulting Group

Rebecca Wirfs-Brock, Wirfs-Brock Associates

The editors at Addison-Wesley

> & & 4 4 & &

for helping to improve the book. [am indebted to Sam Adams for the
terms big-M and little-m methodology, and to Dick Antalek and Wayne
Stevens who taught me the most about big-M methodologies. Marilyn
Rash at Addison Wesley Longman helped save my sanity during the pro-
duction of this book.
I also want to thank the authors of the Eyewitness Accounts for tak-
ing time to contribute their knowledge about object-oriented projects:

Jim Coplien, Bell Labs

Ward Cunningham, Cunningham & Cunningham

C.D., Independent Consultant

Harvie S. (Sam) Griffith, Jr., President, Object Methods Software
Luke Hohmann, SmartPatents

Glenn House, formerly of Mentor Graphics

K.L., Independent Consultant

Jon Marshall, ParcPlace-Digitalk

Tom Morgan, Brooklyn Union Gas

Jeremy Raw, Independent Consultant

® & & 4 0 0 0 0 0 0

K.L. and C.D. asked that I not use their names, in order not to discomfit
any companies.

All these people were kind enough to contribute their experience to
this book. They may not agree with everything I write, but we all share the
wish to help you succeed on your project.

Acknowledgments | xix

Contents

Foreword xi
Preface xiii
Acknowledgments xvi

Chapter 1 1

Success and Failure

Basic Concepts 4

Object Technology 4

Class 5§

Object 5

Inheritance 6

Encapsulation 7

Polymorphism 9

Framework 9

Incremental and Iterative Development 70

Chapter 2 11

Project Expectations

Project Histories 11 :

Alfred: Success with Changing Requirements 12

Brooklyn Union Gas: Success Through Attentiveness 13

Ingrid: Success in Migratingto C++ 14

Manfred: Failure in Prototyping 75

Mentor Graphics: Trouble Migrating toC++ 16

Object Technology International: Success in Productivity
and Speed 17

iv

Contents

Reginald: Failure with Changing Rules 18
Stanley: Too Much Cutting Edge 18

Tracy: Failure Through Naiveté 19

Udall: Success by Restarting Smaller 20
Winifred: Inattentive But Persistent 27
Possible Benefits of Object Technology 23
Responsiveness to Variations on a Theme 23
Responsiveness to Change 23

Time-to-Market 24

Communication Between Developers, Users, and Executives 24
Maintainability 24

Reuse 25

Productivity 25

Window-Based User Interfaces 26

Morale 26

Automated Code Generation 27

Software Process 27

Casts 28
Are You Underestimating? 28
Time to Get New Developers Productive 28
Immaturity of the 00 Industry 29
Hazards of C++ 29
The Difficulty of Reuse 29
Establishing a Software Process 29
Business Modeling versus Software Design 29
The Cost of CASE Modeling Tools 30
Probable Costs 30
Nonobject Issues Checklists 31
Chapter 3 33

Selecting and Setting Up an OO Project

Project Suitability 34

Variations on a Theme 34
Simplified Program Structure 35
Memory Management Features 35
What Is Not Suited? 326

Project Purpose 36

SWAT 37

Investigative 37

Production 40

Full-Commit 47

Other Project Categories 47

People 42

Executive Sponsor 42

Project Manager 43

Technical Lead 44

Technical Staff 44

Users 45

Personality Types 46

Technology 47

The Selection Process 47
One Person Is Persuasive or Stubborn 48
The Team Knows a Similar Technology 48
The Technology Is Safe, Popular, or Standard 49
The Technology Is the Rational Choice 50

Programming Languages 57
Managing Smalltalk 52
Managing C++ 53

¢ Disciplined Use of C++ (Jeremy Raw) 58

Managing 00 COBOL 59
Managing Java 60

Tools 61
Upper-CASE Tools 67

Using Java (Sam Griffith) 62

The Scanner Challenge 65
Minimum CASE Tool Requirements 65
The Cutting Edge 66
Training and Getting Advice 67
What to Teach 68
Developers do not know how to think in objects. 68
Developers do not know how to make design trade-offs. 69
Developers program poorly or use tools badly. 69
Different programmers write differently, making the code hard to learn. 69
Developers create redundant classes because they do not know what
is in the class library. 70
No one knows how to document a framework well. 70

Developers do not understand their role on the project and who depends on them.

71

Contents

v

