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Foreword

One of the central problems synergetics is concerned with consists in the study of
macroscopic qualitative changes of systems belonging to various disciplines such
as physics, chemistry, or electrical engineering. When such transitions from one
state to another take place, fluctuations, i.e., random processes, may play an im-
portant role.

Over the past decades it has turned out that the Fokker-Planck equation pro-
vides a powerful tool with which the effects of fluctuations close to transition
points can be adequately treated and that the approaches based on the Fokker-
Planck equation are superior to other approaches, e.g., based on Langevin equa-
tions. Quite generally, the Fokker-Planck equation plays an important role in
problems which involve noise, e.g., in electrical circuits.

For these reasons I am sure that this book will find a broad audience. It pro-
vides the reader with a sound basis for the study of the Fokker-Planck equation
and gives an excellent survey of the methods of its solution. The author of this
book, Hannes Risken, has made substantial contributions to the development
and application of such methods, e.g., to laser physics, diffusion in periodic
potentials, and other problems. Therefore this book is written by an experienced
practitioner, who has had in mind explicit applications to important problems in
the natural sciences and electrical engineering.

This book may be seen in the context of the book by C. W. Gardiner, “Hand-
book of Stochastic Methods”, in this series which gives a broad and detailed
overview of stochastic processes, and of the book by W. Horsthemke and R.
Lefever, “Noise-induced Transitions”, which treats a problem of particular
current interest, namely, multiplicative noise.

Readers who are interested in learning more about the connection between
the Fokker-Planck equation and other approaches within the frame of synerget-
ics are referred to my introductory text “Synergetics. An Introduction”.

H. Haken



Preface

Fluctuations are a very common feature in a large number of fields. Nearly every
system is subjected to complicated external or internal influences that are not
fully known and that are often termed noise or fluctuations. The Fokker-Planck
equation deals with those fluctuations of systems which stem from many tiny dis-
turbances, each of which changes the variables of the system in an unpredictable
but small way. The Fokker-Planck equation was first applied to the Brownian
motion problem. Here the system is a small but macroscopic particle, immersed
in fluid. The molecules of the fluid kick around the particle in an unpredictable
way so the position of the particle fluctuates. Because of these fluctuations we do
not know its position exactly, but instead we have a certain probability to find
the particle in a given region. With the Fokker-Planck equation such a prob-
ability density can be determined. This equation is now used in a number of dif-
ferent fields in natural science, for instance in solid-state physics, quantum
optics, chemical physics, theoretical biology and circuit theory.

This book deals with the derivation of the Fokker-Planck equation, the
methods of solving it, and some of its applications. Whereas for some cases (e.g.,
linear problems, stationary problems with only one variable) the Fokker-Planck
equation can be solved analytically, it is in general very difficult to obtain a
solution. Various methods for solving the Fokker-Planck equation such as the
simulation method, eigenfunction expansion, numerical integration, the varia-
tional method and the matrix continued-fraction method will be discussed. The
last method especially, which turns out to be very effective in dealing with simple
Fokker-Planck equations having two variables, is treated in detail. As far as I
know it has not yet been presented in review or book form.

In the last part of the book the methods for solving the Fokker-Planck
equation are applied to the statistics of a simple laser model and to Brownian
motion in potentials, especially in periodic potentials. By investigating the
statistical properties of laser light, I first became acquainted with the Fokker-
Planck equation and I soon learned to appreciate it as a powerful tool for
treating the photon statistics of lasers and the statistics of other nonlinear
systems far from thermal equilibrium.

The main emphasis in the applications is made to the problem of Brownian
motion in periodic potentials. This problem occurs, for instance, in solid-state
physics (Josephson tunneling junction, superionic conductor), chemical physics
(infrared absorption by rotating dipoles) and electrical circuit theory (phase-
locked loops). Whereas the Fokker-Planck equation for this problem was solved
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many years ago for the overdamped case (large friction), solutions for arbitrary
friction have been obtained only recently. It will be shown that the solution of the
corresponding Fokker-Planck equation for Brownian motion in periodic poten-
tials (as well as for other potentials) can be expressed in terms of matrix con-
tinued fractions which are very suitable for computer evaluation.

The present book is based on seminar and lecture notes, prepared and
presented at the University of Ulm. Hopefully this book will be useful for
graduate students in physics, chemical physics and electrical engineering to get
acquainted with the Fokker-Planck equation and the methods of solving it, and
that some parts of it will also be profitable to the research worker in these fields.

I wish to thank Prof. H. Haken for inviting me to write this monograph for
the Springer Series in Synergetics. As a co-worker of Prof. Haken for nearly ten
years, I had the privilege to work with him and his group in a very stimulating
and creative atmosphere. I also want to express my gratitude to Dr. H. Lotsch
and his staff of the Springer-Verlag for their co-operation. Next I wish to thank
my co-worker and colleague Dr. H. D. Vollmer. Most of my research on the
Fokker-Planck equation was done in close collaboration with him. With only few
exceptions he has also provided me with the numerical results presented in this
book. Furthermore, he has made many suggestions for improving the manu-
script. The help of Dipl. Phys. P. Jung, Dr. M. Moérsch, and Dipl. Phys. K.
Voigtlander for preparing the figures and for reading the proofs is also greatly
appreciated. Last but not least I wish to thank Mrs. 1. Gruhler and Mrs. H. Wen-
ning for skilfully and patiently typing and correcting the manuscript.

Ulm, February 1984 H. Risken
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1. Introduction

A Fokker-Planck equation was first used by Fokker [1.1] and Planck [1.2] to
describe the Brownian motion of particles. To become familiar with this equa-
tion we first discuss the Brownian motion of particles in its simplest form.

1.1 Brownian Motion

1.1.1 Deterministic Differential Equation

If a small particle of mass m is immersed in a fluid a friction force will act on the
particle. The simplest expression for such a friction or damping force is given by
Stokes’ law

F.=—-av. 1.1

Therefore the equation of motion for the particle in the absence of additional
forces reads

mv+oav=0 (1.2)
or

v+yv=0; y=a/m=1/1. 1.3)

Thus an initial velocity v(0) decreases to zero with the relaxation time t=1/y
according to

v(t) =v(0)e T=v(0)e . (1.4)

The physics behind the friction is that the molecules of the fluid collide with the
particle. The momentum of the particle is transferred to the molecules of the
fluid and the velocity of the particle therefore decreases to zero. The differential
equation (1.3) is a deterministic equation, i.e., the velocity v(f) at time ¢ is
completely determined by its initial value according to (1.4).
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1.1.2 Stochastic Differential Equation

The deterministic equation (1.2) is valid only if the mass of the particle is large so
that its velocity due to thermal fluctuations is negligible. From the equipartition
law, the mean energy of the particle is (in one dimension)

Imv?y=1kT, (1.5) |

where k is Boltzmann’s constant and 7 is the temperature. For smaller mass m
the thermal velocity v, = L/(vz) = |/kT/m may be observable and therefore
the velocity of a “small” particle cannot be described exactly by (1.3) with the
solution (1.4). If the mass of the small particle is still large compared to the mass
of the molecules, one expects (1.2) to_be valid approximately. Equation (1.2)
must, however, be modified so that it leads to the correct thermal energy (1.5).
The modification consists in adding a fluctuating force F(¢) on the right-hand
side of (1.2), i.e., the total force of the molecules acting on the small particle is
decomposed into a continuous damping force F.(¢) and a fluctuating force F(¢)
according to [1.3].

F(t)=F.(t)+Fi(t) = —av(t)+ Fy(?) . (1.6)

This force F(¢) is a stochastic or random force, the properties of which are given
only in the average.

We now want to discuss why a stochastic force occurs. If we were to treat the
problem exactly, we should have to solve the coupled equations of motion for all
the molecules of the fluid and for the small particle, and no stochastic force
would occur. Because of the large number of molecules in the fluid (the number
is of the order 10**), however, we cannot generally solve these coupled equations.
Furthermore, since we do not know the initial values of all the molecules of the
fluid, we cannot calculate the exact motion of the small particle immersed in the
fluid. If we were to use another system (particle and fluid) identical to the first
except for the initial values of the fluid, a different motion of the small particle
results. As usually done in thermodynamics, we consider an ensemble of such
systems (Gibbs ensemble). The force F;(¢) then varies from system to system and
the only thing we can do is to consider averages of this force for the ensemble.

Inserting (1.6) into (1.2) and dividing by the mass we get the equation of
motion

v+yo=1(). (1.7)
Here we have introduced the fluctuating force per unit mass

I'(t) = Fe(t)/m, 1.8)

’

which is called the Langevin force. Equation (1.7) is called a stochastic differen-
tial equation because it contains the stochastic force 7'(¢).
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To proceed further one has to know some properties of this Langevin force
I'(t). First we assume that its average over the ensemble should be zero

(I(0)>=0, (1.9

because the equation of motion of the average velocity (v (¢)) should be given by
(1.2). If we multiply two Langevin forces at different times we assume that the
average value is zero for time differences ¢’ — ¢ which are larger than the duration
time 7, of a collision, i.e.,

KL Ir)y=0 for |t—t'|=z1. (1.10)
.
This assumption seems to be reasonable, because the collisions of different
molecules of the fluid with the small particle are approximately independent.
Usually, the duration time t, of a collision is much smaller than the relaxation
time 7= 1/y of the velocity of the small particle. We may therefore take the limit
79— 0 as a reasonable approximation, giving

(KO T(t)y=qdt—1'). a1y

The J function appears because otherwise the average energy of the small particle
cannot be finite as it should be according to the equipartition law (1.5). This will
be discussed in detail in Sect. 3.1, where it is furthermore shown that the noise
strength ¢ of the Langevin force is then given by

q=2ykT/m. (1.12)

To determine higher correlations like (v (¢y)v(t,)...v(¢,)) higher correlations of
I'(¢) must be known. One usually assumes that the 7'(¢) have a Gaussian distribu-
tion with ¢ correlation (Chap. 3). By integrating the Langevin equation (1.7) and
by using (1.9, 11, 12) we can calculate the diffusion constant (Chap. 3). As is well
known, this diffusion constant was first obtained by FEinstein [1.4], who initiated
the term theory of Brownian motion.

A noise force with the J correlation (1.11) is called white noise, because the
spectral distribution (Sect. 2.4.3) which is given by the Fourier transform of
(1.11) is then independent of the frequency w. If the stochastic forces I'(¢) are
not J correlated, i.e., if the spectral density depends on the frequency, one uses
the term colored noise.

1.1.3 Equation of Motion for the Distribution Function

Because in (1.7) 7'(¢) varies from system to system in the ensemble, i.e., it is a
stochastic quantity, the velocity will also vary from system to system, i.e., it will
become a stochastic quantity, too. We therefore may ask for the probability to
find the velocity in the interval (v, v+dv), or in other words we may ask for the
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number of systems of the ensemble whose velocities are in the interval (v,v+dv)
divided by the total number of systems in the ensemble. Because v is a continuous
variable we may ask for the probability density W(v), also often called prob-
ability distribution in the physical literature. The probability density times the
length of the interval dv is then the probability of finding the particle in the
interval (v, v+dv). This distribution function depends on time ¢ and the initial
distribution. The equation of motion for the distribution function W(v,t)
(Chap. 4) is given by

or ov m vt

2
E)W:)}B(UW)+ kT 0°W (1.13)

Equation (1.13) is one of the simplest Fokker-Planck equations. By solving (1.13)
starting with W (v,0) for 1 =0 and subject to the appropriate boundary condi-
tions, one obtains the distribution function W (v,t) for all later times. Once we
have found W(v,t), any averaged value of the velocity can be calculated by in-
tegration [#(v) arbitrary function of v]

Ch(v(p)) = Th(v)W(v,t)dv. (1.14)

As shown in Sect. 4.7.2, averaged values for multi-time functions may also, for
certain processes, by evaluated by use of appropriate solutions of (1.13).

1.2 Fokker-Planck Equation

In this introductory chapter it is mainly discussed how a Fokker-Planck equation
and some special forms of it look, how they arise and where and how one may
use the Fokker-Planck equation. Many review articles and books on the Fokker-
Planck equation exist [1.5—15].

1.2.1 Fokker-Planck Equation for One Variable

In Sect. 1.1 we found an equation of motion for the distribution function W (v, t)
for one-dimensional Brownian motion. As mentioned, it is a special Fokker-
Planck equation. The general Fokker-Planck equation for one variable x has the
form

ow R} a2
T = | - DYx)+—DYPx) | W. 1.15
Y [ - D) + D) (1.15)
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In (1.15) D®(x) > 0 is called the diffusion coefficient and DV (x) the drift coef-
ficient. The drift and diffusion coefficients may also depend on time. Equation
(1.13) is seen to be a special Fokker-Planck equation where the drift coefficient is
linear and the diffusion coefficient is constant. Equation (1.15) is an equation of
motion for the distribution function W(x,r). Mathematically, it is a linear
second-order partial differential equation of parabolic type. Roughly speaking, it
is a diffusion equation with an additional first-order derivative with respect to x.
In the mathematical literature, (1.15) is also called a forward Kolmogorov
equation.

1.2.2 Fokker-Planck Equation for /N Variables

A generalization of (1.15) to the N variables x;...xy has the form

N A
—=|-L —Dx)+ ¥ D,ﬂ-z’(:x:)] w. (1.16)
i=1 0X; ij=1 0x;0x;
The drift vector D{" and the diffusion tensor D’ generally depend on the N
variables xi, ..., xy = x}. The Fokker-Planck equation (1.16) is an equation for
the distribution function W(x},t) of N macroscopic variables {x|. (Here x; may
be variables of different kinds for instance position and velocity.)

1.2.3 How Does a Fokker-Planck Equation Arise?

As discussed already for the Brownian motion case, the complete solution of a
macroscopic system would consist in solving all the microscopic equations of the
system. Because we cannot generally do this we use instead a stochastic descrip-
tion, i.e., we describe the system by macroscopic variables which fluctuate in a
stochastic way. The Fokker-Planck equation is just an equation of motion for
the distribution function of fluctuating macroscopic variables. For a deter-
ministic treatment we neglect the fluctuations of the macroscopic variables. For
the Fokker-Planck equation (1.16) this would mean that we neglect the diffusion
term.

Equation (1.16) is then equivalent to the system of differential equations
(i=1,...,N)

dx;/dt = x;= DV (xy, ..., xx) = DV(Ix)) (1.17)

for the N macrovariables |x|. Table 1.1 gives a schematic representation of the
following three stages of treating a system. A rigorous derivation of stochastic
treatment should start with microscopic description. The deterministic treatment
should then follow from the stochastic treatment by neglecting the fluctuations,
as indicated by the big arrows. The drift and diffusion coefficients D{" and D
especially should be derived rigorously from the microscopic equations. Such a
rigorous derivation may be very complicated or even impossible. In this case, one



