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ABSTRACT

The dielectric, elastic and piezoelectric properties of modified lead titanate
ceramics were investigated with the goal of better understanding their highly
anisotropic electromechanical behavior.

Two compositions, (Pby g5Smy ;,)(Ti 15.93Mng 2)0; (or PST) and
(Pby76C29 24)[(Co, ;W 200,04 Tl 96] 05 (OF PCT), where investigated as representatives
of modified lead titanate ceramics. Measurements of dielectric, elastic and piezoelectric
properties of PST and PCT ceramics, using a standard resonance technique, showed
that the large anisotropy in the electromechanical coupling factors is exclusively due to
the anisotropy in the piezoelectric coefficients dy, and d,;. The ratio d,,/d,,; depends on
both poling field and temperature.

The thickness coupling factor, k,, remains almost constant with temperature for
PCT and PST ceramics. At room temperature d,; increases with poling field,
saturating to near 60 pC/N at large poling fields. At the same time d, initially
increases and then decreases with poling field thus causing a large dy,/d,, ratio.

Measurements of complex material coefficients relevant for the planar coupling
mode, using an iterative technique, showed that d; as well as the elastic compliance,
$11% and the dielectric permittivity, £;,X, must be considered as complex in order to
accurately describe the resonant properties of these ceramics. Measuring the complex
d;, as a function of temperature (-180°C to +100°C), it was possible to show that the
real component d,,', in both ceramics, changes sign with temperature, thus causing a
zero planar coupling factor, kp, at a certain temperature. The examination of the
dependence of complex d;, on temperature with poling field as a parameter (10 to 50
kV/em) showed that the temperature at which d,,' becomes zero depends on the poling
field. This shift of zero crossover point of d,,' with poling field causes a decrease of

d,,' (and k’) with poling field at room temperature.



A significant imaginary component of the piezoelectric coefficient and a similar
temperature behavior of imaginary elastic, dielectric and piezoelectric coefficients in
these ceramics indicate a presence of piezoelectric relaxational mechanisms, whose
origin is in a coupling between elastic and dielectric losses. Assuming that the complex
d,, in PST and PCT ceramics may be represented as a sum of the intrinsic piezoclectric
effect, d,,*, and extrinsic relaxational contributions, A d,,™idy;", it is possible to
consistently interpret the dependence of the experimentally determined real part,
dy,'= dy; "+ Ad,,’, on poling field and temperature through competing effects of dy,*
and Ad,,".

A large anisotropy in piezoelectric coefficients seems to be only enhanced by
zero dy, since a large d,,/d,, ratio was observed even in those samples which, due to
differing processing conditions, did not exhibit a change of sign in d,,' over the
invesdgated temperature range. This large anisotropy in piezoelectric coefficients
seems to be a consequence of averaging of single crystal properties of modified lead
titanate ceramics.

The neutron powder diffraction study showed that Sm in PST ceramics was
properly incorporated at the A site in the perovskite structure. A model with Ca cation
substtuting only for Pb as well as a model with Ca randomly occupying the A and B
site lead to unrealistic stochiometries of PCT compositon. In both compositions as
well as in a pure PbTi0O, powder, the shifts of O1 and O2 oxygens in respect 1o their
ideal cubic positions are different, causing an asymmetric oxygen octahedron.

The equivalent circuit of a piezoelectric resonator with a large piezoelectric phase
angle was derived allowing that it may include a frequency dependent resistive term.
This was necessary in order to describe piezozlectric contributions to the total energy

dissipation of the resonator.
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