Undergraduate Texts in Mathematics

John L. Troutman

Variational Calculus
with Elementary
Convexity

T7777777 = 777777

Jy+v) =Jy)=3dd(yv)

i

/

Springer-Verlag New York - Heidelberg * Berlin



John L. Iroutman

With the assistance of W. Hrusa

Variational Calculus
with Elementary Convexity

With 73 llustrations

)

Springer-Verlag
New York Heidelberg Berlin



John L. Troutman
Department of Mathematics
Syracuse University

200 Carnegie

Syracuse, NY 13210

US.A.

Editorial Board

P. R. Halmos
Department of Mathematics
Indiana University
Bloomington, IN 47405
US.A.

William Hrusa

Department of Mathematics
Carnegie-Mellon University
Pittsburgh, PA 15213
USA.

F. W. Gehring
Department of Mathematics
University of Michigan

Ann Arbor, MI 48109
U.SA.

AMS Subject Classifications (1980): 26-01, 49-01

Library of Congress Cataloging in Publication Data

Troutman, John L.

Variational calculus with elementary convexity.
(Undergraduate texts in mathematics)

Bibliography: p
Includes index.
1. Calculus of variations.

I. Hrusa, W. (William) II. Title.
QA315.T725 1983 515".64

2. Convex functions.
III. Series.

82-19257

© 1983 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York,
New York 10010, U.S.A.

Typeset by Composition House Ltd., Salisbury, England.
Printed and bound by R. R. Donnelley & Sons, Harrisonburg, VA.
Printed in the United States of America.

987654321

ISBN 0-387-90771-8 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90771-8 Springer-Verlag Berlin Heidelberg New York



Undergraduate Texts in Mathematics

Editors

F. W. Gehring
P. R. Halmos

Advisory Board

C. DePrima
1. Herstein



Undergraduate Texts in Mathematics

Apostol: Introduction to Analytic
Number Theory.
1976. xii, 338 pages. 24 illus.

Armstrong: Basic Topology.
1983. xii, 251 pages. 132 illus.

Bak/Newman: Complex Analysis.
1982. x, 224 pages. 69 illus.

Banchoff/Wermer: Linear Algebra
Through Geometry.
1983. x, 257 pages. 81 illus.

Childs: A Concrete Introduction to
Higher Algebra.
1979. xiv, 338 pages. 8 illus.

Chung: Elementary Probability Theory
with Stochastic Processes.
1975. xvi, 325 pages. 36 illus.

Croom: Basic Concepts of Algebraic
Topology.
1978. x, 177 pages. 46 illus. i

Fischer: Intermediate Real Analysis.
1983. xiv, 770 pages. 100 illus.

Fleming: Functions of Several Variables.
Second edition.
1977. xi, 411 pages. 96 illus.

Foulds: Optimization Techniques: An
Introduction.
1981. xii, 502 pages. 72 illus.

Franklin: Methods of Mathematical
Economics. Linear and Nonlinear
Programming. Fixc oint Theorems.
1980. x, 297 pages. 38 illus.

Halmos: Finite-Dimensional Vector
Spaces. Second ediiion.
1974. viii, 200 pages.

Halmos: Naive Set Theory.
1974, vii, 104 | «¢s.

Iooss/Joseph: Elementary Stability and
Bifurcation Theory.
1980. xv, 286 pages. 47 illus.

Kemeny/Snell: Finite Markov Chains.
1976. ix, 224 pages. 11 illus.

Lax/Burstein/Lax: Calculus with
Applications and Computing,
Volume 1.

1976. xi, 513 pages. 170 illus.

LeCuyer: College Mathematics with
A Programming Language.
1978. xii, 420 pages. 144 illus.

Macki/Strauss: Introduction to Optimal
Control Theory.
1981. xiii, 168 pages. 68 illus.

Malitz: Introduction to Mathematical
Logic: Set Theory - Computable
Functions - Model Theory.

1979. xii, 198 pages. 2 illus.

Martin: The Foundations of Geometry
and the Non-Euclidean Plane.
1975. xvi, 509 pages. 263 illus.

Martin: Transformation Geometry: An
Introduction to Symmetry.
1982. xii, 237 pages. 209 illus.

Millman/Parker: Geometry: A Metric
Approach with Models.
1981. viii, 355 pages. 259 illus.

Prenowitz/Jantosciak: Join Geometries:
A Therv of Convex Set and Linear
Gouvenedrys

1979. xxii, 534 pages. 404 illus.

Priestly: Calculus: An Historical Approach.

1979, xvii, 448 pages. 335 illus.

Protter/Morrey: A First Course in Real
Analysis.
1977. xii, 507 pages. 135 illus.

(continued on page 365)



T his book is dedicated to
my parents, and to
RGB, the artist.



Preface

The calculus of variations, whose origins can be traced to the works of
Aristotle and Zenodoros, is now a vast repository supplying fundamental
tools of exploration not only to the mathematician, but—as evidenced by
current literature—also to those in most branches of science in which
mathematics is applied. (Indeed, the macroscopic statements afforded by
variational principles may provide the only valid mathematical formulation
of many physical laws.) As such, it retains the spirit of natural philosophy
common to most mathematical investigations prior to this century. How-
ever, it is a discipline in which a single symbol (0) has at times been assigned
almost mystical powers of operation and discernment, not readily subsumed
into the formal structures of modern mathematics. And it is a field for which
it is generally supposed that most questions motivating interest in the
subject will probably not be answerable at the introductory level of their
formulation.

In earlier articles,’'* it was shown through several examples that a
complete characterization of the solution of optimization problems may
be available by elementary methods, and it is the purpose of this work to
explore further the convexity which underlay these individual successes in
the context of a full introductory treatment of the theory of the variational
calculus. The required convexity is that determined through Géteaux
variations, which can be defined in any real linear space and which provide an
unambiguous foundation for the theory. In applications, this convexity for
integral functions is assured by a partial convexity of their integrands.

2

' (With W. Hrusa) Elementary characterization of classical minima. MAA Monthly, May 1981
(321-327).

2 Partially convex functions in the variational calculus. Real Analysis Exchange, 7, 1981-1982
(89-92).



viii Preface

This book is intended as an introduction to the use of variational methods
in the formulation and solution of optimization problems of both mathe-
matical and physical interest. It is an outgrowth of lectures presented in the
Mathematics Department of Syracuse University during the past several
years. In preliminary form, the material from Chapters 0-6 comprised a
standard one-semester course of three hours per week given to upper-level
students in mathematics, physics, computer science, and engineering, and
that from the remainder of the book was offered on request during a succeed-
ing semester.

When pursued systematically, it is designed to carry those who have
completed a standard course in multidimensional calculus—with some
exposure to differential equations—through the rudiments of rigorous
analysis in (normed) linear spaces. For it is in the presence of the linear
spaces of continuously differentiable functions that a theory for the integral
inequalities which generated the calculus of variations can first be clarified.
In this setting, the fundamentals of the subject are explored, including the
natural role of the differential equations of Euler—Lagrange in relating the
behavior of integral inequalities to the physical principles of stationarity.
(The actual plan of the text is presented in §1.5.)

However, this book departs from previous introductory texts by placing
initial emphasis on (global) sufficiency considerations as the basis for
motivation and development, thereby postponing (until Chapter 5) the
more subtle mathematical questions of (local) necessity. Instead, it is shown
(in Chapter 3) that after suitable formulation, many minimization problems
of interest exhibit a natural convexity which can be readily discerned, and
which leads directly to their (unique) solution through the equations of
Euler-Lagrange. Within this framework, generalization to vector valued
and multidimensional problems is straightforward, and even the method
of Lagrangian multipliers becomes not a mystery, but a simple observation.
Thereby made available at an introductory level are some of the benefits
which convexity considerations supply to modern functional analytic
treatments of this subject, such as [E-T], [I-T], [K-S], [R] and [V].

Surprisingly, most of the standard problems in the subject yield at least
partial solution by this method. Moreover, convexity may supply insight
and direction for analysis of the remaining problems, and it offers, for
example, a mechanism by which Hamilton’s principle of stationary action
can be reduced to Bernoulli’s principle of minimum potential energy. Finally,
when the general sufficiency arguments for a minimum are presented (in
Chapter 9) it will be recognized that those integrand functions amenable
to attack by the (field theory) methods there presented also exhibit a partial
convexity, albeit to a lesser degree than those studied previously. Effective
notation is employed to facilitate the recognition and manipulation of
partially convex functions and to reduce the complexity of formal appear-
ance which plagues any presentation of the variational calculus.

The methods considered herein are directed toward obtaining exact
solutions for the problems encountered—usually in the form of functions
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defined explicitly or parametrically—although recognition is taken of the
possibility and value of approximations. Each attack by exact methods
requires finding a solution of the Euler-Lagrange equation(s) with given
boundary conditions (which need not be achievable). If extremal values are
sought, then the nature of the solution must be further characterized.
Hence, the supply of completely workable problems is limited, and further
progress demands that the reader be drawn into the fabric of the theoretical
development. Partly for this purpose, and partly to reserve the text proper
for a presentation of essentials, I have intended that some of the problems
at the end of each chapter be considered as integral to the exposition.
Alternatively, these problems, frequently starred and cited at the appropriate
points in the text, could be used as a basis for supplementary lectures. An
effort has been made to distribute the difficulty of each problem thoughout
a partitioned statement from which partial assignment may be made within
context of the whole. Answers are provided for selected problems.

A significant number of problems for each chapter have been contributed
by William Hrusa, who has maintained the interest in this subject, begun
here at Syracuse, throughout his graduate career at Brown University.
Moreover, he has been associated with this book since its inception and
has supplied assistance and cogent comment during its preparation.

Although some effort has been made to acknowledge original contribu-
tors to this subject, I have embraced (with relief) the customary practice
which permits drawing from unspecified sources that which might benefit
this text. Most of these works are listed in the bibliography ; to their authors,
I am indebted.

I wish also to express my appreciation to those who first made me aware
of the elegance and power of variational methods—Daniel Frederick at
V.P.I., M. M. Schiffer at Stanford, and C. Lanczos as author. Special grati-
tude is offered to my colleagues at Syracuse, Philip Church and Wolfgang
Jurkat who used some of this material in preliminary form in class and
supplied valuable suggestions. In addition, useful comment was received from
J. Erdman, and from my colleague Daniel Waterman, whose concerned
encouragement has sustained my determination to produce this book.
[t is essential to recognize the many contributions from my students over the
years, whose willingness to work with sets of notes in a state of daily transi-
tion—and to ask for more—convinced me of the value of the effort. They are
too numerous to name here, but they will be remembered.

Finally, I wish to recognize the efforts of those responsible for the trans-
formation of this work, from manuscript to printed page—of Louise Capra
and Esther Clark, the principal typists; of Jody Bush, who endured in-
numerable revisions; and the staff of Springer-Verlag, who combined
expertise with understanding during its production.

Syracuse JonN L. TROUTMAN
New York
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CHAPTER 0
Review of Optimization in R*

This chapter presents a brief summary of the standard terminology and
basic results related to characterizing the maximal and minimal values of a
real valued function f defined on a set D in Euclidean space. With the
possible exception of the remarks concerning convexity ((0.8) and (0.9)),
this material is covered in texts on multidimensional calculus; the notation
is explained in §1.5.

Ford=1,2,3,..., let R denote d-dimensional real Euclidean space
where a typical point or vector X = (x,, X,, ..., X;) has the length
|X| = (Q4-, |x;/)"? which is positive unless X = ¢ = (0,0,0,..., 0).

On RY, with Y = (¥4, V5, ..., ya), we have the vector space operations of
componentwise addition
X+ YE QO 4y Xa + V2o eees Xa + Vo),
and scalar multiplication:
aX ¥ (ax,, ax,, ..., ax,), VaeR.

We may also express | X | = (X - X)'/2, utilizing the scalar or dot product
d
XYy -lejy,-,
=

which is subject to the Cauchy inequality
(X -V <|X]||Y]. (1)
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The Cauchy inequality (1) is used to prove the so-called triangle inequality
X +Y|<|X|+ Y], (2a)
an alternate form of which is
[1X] = 1Y <|X = Y|, (2b)
where
X - Y% X +(=1Y; (Problem 0.1).
| X — Y| defines the Euclidean distance between X and Y.

When X, € R?, then for § > 0, the “sphere”
Ss(Xo) E {X eR: | X — X,o| < 8}

is called an (open) neighborhood of X, and X is said to be an interior point
of each set D which contains this neighborhood for some 6 > 0. D is open
when it consists entirely of interior points. An open set D is a domain when
each pair of its points may be connected by a (polygonal) curve which lies
entirely in D. Each open sphere is a domain, as is each open “box”

B={XeR":a;<x;<b;,j=12,...,d}

but the union of disjoint open sets is not a domain, although it remains open.

A point not in the interior of a set S, and not interior to its complement,
RY ~ S, is called a boundary point of S. The set of such points, denoted 45,
is called the boundary of S. For example, if S = {(X e R*: | X| < 1}, then
0S =B ={XeR|X|=1};also 6B = B.

We suppose that we are given a real valued function f defined on a set
D < R? for which we wish to find extremal values. That is, we wish to find
pointsin D (called extremal points) at which f assumes maximum or minimum
values. With such optimization problems we should note the following facts:

(0.0) 1 need not have extremal values on D.

For example, when D = R, then the function f(X) = x, is unbounded
in both directions on D. Moreover, when D = (—1,1) < R!, this same
function, although bounded, takes on values as near —1 or | as we please
but does not assume the values +1 on (—1,1). On the closed interval,
D = [—1, 1], this function does assume both maximum and minimum
values, but the function

1
fX)=—, x#0,
X1

1) =0,

is again unbounded.
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(0.1) f may assume only one extremal value on D.

Forexample,on D = (—1, 1] thefunction f(X) = x, assumes a maximum
value (4 1), but not a minimum value, while on (—1, 1) the function f(X)
= x? assumes a minimum value (0) but not a maximum value.

(0.2) f may assume an extremal value at more than one point.

On D =[—1,1], f(X) = x? assumes a maximum value (1) at x; = +1,
while on D = R?, f(X) = x7 assumes its minimum value (0) at every point
located on the x, axis.

The only reasonable conditions which guarantee the existence of extremal
values are contained in the following theorem whose proof is deferred.
(See Proposition 5.3.)

(0.3) Theorem. If D = R? is compact and f:D — R is continuous, then f
assumes both maximum and minimum values on D.

In R% a compact set is a bounded set which is closed in that it contains
each of its boundary points. In particular, each “box” of the form

B={XecR:9, <& =b,j=12....4d)

J

for given real numbers a; < b;, j =1, 2, ..., d is compact. However, the
interval (— 1, + 1) is not compact. (See §A.0.)

f:D — Ris continuous at X € D iff foreach e > 0,3 > 0, such that when
XeD and | X — X,| <9, then | f(X) — f(X,)| < ¢; and f is continuous
on D iff it is continuous at each point X, € D.

The previous examples show that neither compactness nor continuity
can alone assure the existence of extremal values.

(0.4) The maximum value of f is the minimum value of —f and vice versa.
Thus it suffices to characterize the minimum points, those X, € D for which

f(X) = f(Xo), VXeD. 3)

As we have seen, such points may be present even on a noncompact set.

(0.5) When D contains a neighborhood of X ,, an extremal point of f, in which f
has continuous partial derivatives f, = of/0x;,j = 1,2,...,d, then for each
vector U € R? of unit length, the (two-sided) directional derivative:

[f(Xo + ¢U) —f(Xo)] o

0y f(Xo) = lim

£=0

= 0.

. =— (X, + el)

66 =0
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[The bracketed quotient reverses sign as the sign of ¢ is changed. The exis-
tence and continuity of the partial derivatives ensures the existence of the
limit which must therefore be zero.]

Introducing the gradient vector Vf % (fxp fxps --+» fx)» We may also
express Jy f(X,) = Vf(X,)- U, and conclude that at such an interior

extremal point X,

Vi(Xo) = 0. (C))

(0.6) The points X at which (4) holds, called stationary points (or critical
points) of f, need not give either a maximum or a minimum value of f.

For example, on D = [ —1, 1], the function f(X) = x} has x, = 0 as its
only stationary point, but its maximum and minimum values occur at the
end points 1 and — 1 respectively.

On D = R?, the function f(X) = x3 — x7 has X, = (0,0) as its only
critical point; it has there maximal behavior in the x; direction (x, = 0)
and minimal behavior in the x, direction (x; = 0).

(In such cases, X, is said to be a saddle point of f.)

(0.7) A stationary point X, may be (only) a local extremal point for f; i.e.,
one for which f(X) = f(X,) (or f(X) < f(X,)) for all X € D which are
sufficiently near X .

For example, the polynomial f(X) = x} — 3x, has on D =[-3,3],
stationary points at x;, = — 1, 1; the first is (only) a local maximum point

while the second is (only) a local minimum point for f. (See Figure 0.1.)

X3 A

+3 x

Figure 0.1

(0.8) When fis a convex function on D then it assumes a minimum value at
each stationary point in D.



