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Foreword

My first practical acquaintance with an allenic compound, although I was
not to know it until many years later, was with one of the most intractable
of the carotenoid pigments, fucoxanthin, at Manchester in 1937, Until the
post-war years, to most of us the allenic structure was of theoretical
stereochemical interest.

It was in 1874, in what can fairly be regarded as the most important
individual publication in organic chemistry, that J. H. van’t Hoff, then only
22, made far-reaching predictions about compounds containing cumulative
ethylenic bonds, i.e.

=C=(C=),C<

He discerned that in the series with an even-number of double bonds
(where n =1,3,5 etc) appropriately substituted compounds should exhibit
asymmetry and hence be resolvable into optical isomers while in the
odd-numbered series (where n =2,4 etc) they should exhibit cis-trans-
isomerism as with simple ethylenic compounds. The first of these was
eventually proved more or less simultaneously by W. H. Mills and
P. Maitland at Cambridge and by E. P. Kohler, J. T. Walker and M. Tishler
at Harvard in 1935, whereas his second proposition had to wait another
two decades for substantiation (R. Kuhn and K. L. Scholler, 1954).

Apart from the above the text books of the 1950’s, which had little to
relate even about acetylene chemistry, were even more reticent regarding
allenes, Karrer mentioning only allene and dimethylallene. However, inter-
est was deservedly aroused by Jacobs’ (T. L. Jacobs, R. Akawie and R. G.
Cooper, 1951) classical study of the prototropic rearrangement of alkynes
and the isomeric allenes. For us, encountering allenic compounds in the
course of synthetic studies, observation of the facile rearrangement of
methyl but-3-ynoate with bicarbonate and the production of penta-3,4-
dienol by lithium aluminium hydride reduction of pentenynol gave clear
indications of the ubiquity and stability of these unfamiliar compounds.
The facile detection of the allene system by its infrared absorption and its
recognition in the remarkable fungal metabolite mycomycin, C;3H;,0,,
by W. D. Celmer and I. A. Solomons (1952) helped significantly to generate
interest in this hitherto neglected combination of ethylenic unsaturation
so that in the last quarter of a century developments have been continuous
and considerable.
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viii FOREWORD

The results of work in the allene field are widely scattered through the
literature and the time has surely come when they should be collected
together in a convenient form to enable the fullest advantage to be taken
of the knowledge that has been accumulated. Professor Stephen Landor
became interested in allene chemistry whilst at Manchester in the early
1950’s and he and his wife have contributed consistently and notably to
this field, despite vicissitudes which would undoubtedly have deterred many
less-enthusiastic spirits. He has built up a vast fund of knowledge and
experience of the last 30 years and there is no one better qualified to
produce a definitive work on the subject.

University of Oxford Sir Ewart R. H. Jones, F.R.S.



Preface

The number of publications involving allenes has increased from just a few
in 1955 to about one hundred and fifty per annum in the seventies. A
comprehensive monograph is long overdue and when 1 was approached
by the publishers I readily agreed that Dr. P. D. Landor and I would write
on Allenes. However, the phenomenal expansion of the field made it
necessary to invite other authors, all experts specialising in different aspects
of allene chemistry, to contribute if the work was ever to be completed.
The book aims at comprehensive, yet critical coverage of the chemistry of
allenes in a readily digestible form. We have emphasised the useful aspects
of syntheses and reactions of allenes, the chemistry of natural and biologi-
cally active allenes and allenic intermediates in organic synthesis as well
as applications of the stereochemistry and spectroscopic properties of
allenes. The last chapter describes key experimental techniques which we
feel any third year undergraduate should be able to apply successfully.

The volumes are intended to serve all chemists, experts and novices,
academic and industrial alike and help them to inciude allenes in their
research programmes. We shall be well satisfied if others feel, as we do,
that they will fill an important gap in chemical knowledge.

The University of the West Indies, Stephen R. Landor
Mona, Kingston, Jamaica.
January 1982
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Structural chemistry predicts that allenes are nonplanar with the sub-
stituents lying in perpendicular planes." This has been verified experi-
mentally for various types of allenes. Consequently, allenes may become
chiral through an appropriate arrangement of (achiral) ligands on the four
ligand sites of the allenic molecular skeleton. The configurational stability
of allenes is well known," and therefore such chiral allenes can be isolated
under normal ldboratory conditions. It is the intention here to summarize
stereochemical aspects of the chirality of allenes. Starting from structural
features that give rise to chiral allenes, this chapter describes methods for
the determination of absolute configurations of the various kinds of chiral
allenes from chiroptical properties, including molar rotations [¢ 15 at the
wavelength of the sodium D line, optical rotatory dispersion (o.r.d.) [¢]13’
for different wavelengths, or circular dichroism (c.d.) Ae of electronic bands.
Furthermore, possibilities for determining optical purity (o.p.) or enan-
tiomeric excess (e.e.),’ of molecular ensembles having given optical rota-
tions, are discussed.

The central topic of this chapter, however, is concerned with an overview
covering the methods used to obtain optically active allenes. Some
stereochemical and synthetic aspects of chiral allenes are summarized in
references 2 and 3; there the literature has been reviewed up to December
1971. Since then a wealth of stereochemical data has appeared. In order
to present a consistent and almost complete summary of the stereochemistry
of allenes, the already reviewed stereochemical result§ are reconsidered in
the context of the material now available.

Dynamical aspects (reactions of chiral allenes) are treated partly in
connection with the chemical methods for the deduction of absolute
configurations of chiral allenes. Additionally, a discussion of some special
reactions completes this chapter on (static and dynamic) stereochemistry
of allenes.

6.1. Absolute configuration and optical purity

6.1,1. Structure and nomenclature of chiral allenes

Chirality is a property that differentiates an object from its mirror image
and therefore is related to the concept of symmetry. Objects related to
each other as image and mirror image are called enantiomers.! Clearly,
any object can have only one enantiomer.
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Symmetry may be defined mathematically in terms of a geometrical
“symmetry group’ G of several ‘‘symmetry operations”. A chiral object
cannot be superimposed onto its mirror image by rotation (and/or transla-
tion). Therefore, an object is achiral if only the position in space is altered
on reflection or rotation-reflection, i.e. it is achiral if its symmetry group
contains planes of reflection and/or improper rotations.

Chirality of molecules may be described on several levels. The first level
uses the model of spatially rigid molecules, which allows the systematic
treatment of chirality for idealized objects on the basis of the geometrical
arrangements of points in space. It starts from the conceptional dissection
of allenes into the achiral skeleton of symmetry D,4 with four ligand sites
to which the substituents are attached (Fig. 1). The ligands may be atoms
or groups of atoms. The allenic skeleton is polycentric and of the symmetry
of an irregular tetrahedron, and thus it may be related geometrically to
the monocentric methane skeleton of symmetry Ty of the regular

tetrahedron.
O} @ Q@
o ~3 o G
Figure 1

If the achiral ligands of the molecules are represented by points of a
definite quality, symmetry operations on the rigid skeleton are identical
with interchanges of the ligands, i.e. permutations of the ligands among
the sites. Such permutations give in general a different isomer, but there
are some permutations whose effect is the same as simply rotating the
molecule and/or replacing it by its mirror image. The truly different isomers
produced in this way are termed ‘‘permutation isomers”.

On this level of describing stereoisomers a particular molecule is charac-
terized by a spatial arrangement of indexed points (the ligands) on the
ligand sites, and molecules with exclusively identical ligands have the
symmetry of the molecular skeleton. A systematic treatment of the
possibilities for getting chiral allenes through arrangements of different or
like ligands on the four allenic sites may be achieved by ‘‘partition
diagrams”,’ where like ligands are arranged in horizontal boxes (Fig. 2).

==

LT TT] []

Dsa -

L]

Cs C, Cy G
Figure 2
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Accordingly, allenes where the chirality is due to the spatial arrangement
of achiral ligands may have two identical ligands. Generally, chiral allenes
are of the types a—c in Fig. 3. Methane derivatives must have four different
ligands to become chiral. The type of chirality associated with an appropri-
ate arrangement of ligands around the polycentric allenic skeleton is usually
referred to as “axial chirality”’, whereas monocentric systems give rise to
“centrochirality’’ (‘“asymmetric atoms)."

Rl\c—c—c'"RZ Rl\C—c—c"'R] Rl\c—c—c"'R‘t
TN TN TN
/ R! RZ/ R3 R2/

(a) (b) (c)

R? R?

Figure 3

The configurational nomenclature of enantiomeric allenes is related to
their axial chirality by the Cahn-Ingold-Prelog convention.'® For the pur-
pose of nomenclature the enantiomer 1 should be viewed along the allenic
axis of the molecule and represented in an appropriate projection. Accord-
ing to the sequence rules for axially chiral molecules, front groups have
precedence over rear groups. This gives the precedence order CO,Me >
Me > Br > H for 1, and consequently the enantiomer 1 has the (S)
configuration. Similarly, the configurational nomenclature for chiral cyclic
allenes, such as (R)-cyclonona-1,2-diene (2), is established.

H H
CO,Me Ne=c=
MCOZC\ _H au \CHZ
c=Cc=C__ H Br Hzc\¥
Me/ Br (CH,)q4
1) Me @

So far, concerning the general treatment of isomeric allenes, we have
restricted ourselves to enantiomers, which are related to each other simply
by interchange of geminal substituents. Permutation of ligands among
arbitrary ligand sites may give constitutional isomers (structural isomers),
which may or may not be chiral. Permutations of the ligands in allenes of
types a and b to give non-enantiomeric isomers only lead to achiral constitu-
tional isomers of symmetry C,, (R*> = R} or G, (R* # R?), respectively,
with like geminal ligands. On the other hand, from allenes of type ¢, with
four different ligands, three non-enantiomeric chiral isomers may be gener-
ated, e.g. the ensemble d in Fig. 4.

On the geometrical level of point-models for molecules, stereoisomeric
allenes therefore are described by the terms ‘“‘constitution’ and “‘configur-
ation”, i.e. the sequential arrangements of atoms in the molecules regardless
of their directions in space (constitution) and the relative positions of atoms
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R! R! R! 3
N R N R N R
C=C=C\ C=C=C\ C=C=C\
RZ/ R3 R3/ R4 R4/ RZ
d)
Figure 4

and/or groups in space (configuration). Thus stereoisomeric allenes may
be classified as enantiomers and diasterecomers. Enantiomers can be
differentiated by their chiral (pseudoscalar) properties, whereas
diastereomers (constitutional isomers) may be differentiated by their scalar
molecular properties.

The next level of describing stereoisomers takes into consideration the
actual disposition of the atoms in space in terms of bond distances, bond
angles, dihedral angles, etc. (conformation). Mycomycin (3), [a]p —130°
(EtOH), is a naturally occurring allene®™* which may have cis and trans
double bonds in the ligand. In the arbitrary absolute configuration 3a it is
one of eight possible stereoisomers.Consequently, one may distinguish
configurational diastereomers (of the type d in Fig. 4) and conformational
diastereomers (like those of mycomycin, 3).

HC=CC=C
N -H
HC=CC=C H AN
C=C=C H 4
; N H—C
H C—H N
H—C C// //C —H
7N H—C
HO,CCH,—C—H 'H |
CH,CO,H
) (a)

Enantiomerism in allenes may, of course, arise also from the presence
of one or more asymmetric atoms in the molecules, i.e. chirality may be
induced by a chiral ligand of the otherwise achiral allenic radical, such as
in e where one hydrogen is substituted by a centrochiral substituent. For
such cases the configurational nomenclature refers to the rules for asym-
metric atoms. '

H

(e)

More interesting is the combination of the allenic axial chirality and the
atomic centrochirality of a ligand. Some naturally occurring diyne-allenes
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HC=CC=C H
e \(IIH(CHZ)ZCOZH [a]p +380° (EtOH)
OH
MeC=CC=C H
c=c=c_ (G}
e \('IH(CHZ)ZCOZH [a]o +360° (EtOH)
OH
HC=CC=C H
c=C=C_ (©)
u \CIH(CHZ)ZOH [a]p +210° (EtOH)
OH
He=ce=c H
C=C=C] H o)

o
u’ \CHZU [a]p +210° (EtOH)
0

(4-7) show this type of chirality.s‘7 Concerning the allenic axial chirality,
the dextrorotatory molecules have the (S) configuration. For such kinds of
molecules the structural criterion for enantiomerism in each subunit, namely
interchange of geminal ligands, applied to only one chiral subunit gives
rise to diastereomers, which may be differentiated by their scalar properties.
For instance, the diastereomers 8a and 8b, arbitrarilv given as the (S)(R)
and (§5)(S) isomers, exhibit measurably different 'H n.m.r. for their
diastereotopic allenic hydrogen atoms and the protons of the methyl
groups.®

H

Seceme ™ N -Me
a-Np\ y SMe a—Np\ /C—C—-C\H
Me---Ge Me‘;Ge
Ph
(83) Ph (8h)

For allenes of the type 4-8 there exist four optically active isomers. If
two chiral allenic subunits are combined to form a diallene there are fewer
than four optically active isomers, since the meso isomer with a centre of
symmetry will be achiral. For instance, the chemical syntheses of the
acyclic diallenes 9 and 10 afforded only meso forms.” On the other hand,

Me. /H
R/C-—-C—C\ R
/C—C—C\

H

9) R=Ph

Me  10) R = Bu



