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Preface

The main theme of this book is the stability of nonautonomous differential
equations, with emphasis on the study of the existence and smoothness of
invariant manifolds, and the Lyapunov stability of solutions. We always con-
sider a nonuniform exponential behavior of the linear variational equations,
given by the existence of a nonuniform exponential contraction or a nonuni-
form exponential dichotomy. Thus, the results hold for a much larger class of
systems than in the “classical” theory of exponential dichotomies.

The departure point of the book is our joint work on the construction of in-
variant manifolds for nonuniformly hyperbolic trajectories of nonautonomous
differential equations in Banach spaces. We then consider several related de-
velopments, concerning the existence and regularity of topological conjugacies,
the construction of center manifolds, the study of reversible and equivariant
equations, and so on. The presentation is self-contained and intends to con-
vey the full extent of our approach as well as its unified character. The book
contributes towards a rigorous mathematical foundation for the theory in the
infinite-dimensional setting, also with the hope that it may lead to further
developments in the field. The exposition is directed to researchers as well as
graduate students interested in differential equations and dynamical systems,
particularly in stability theory.

The first part of the book serves as an introduction to the other parts. After
giving in Chapter 1 a detailed introduction to the main ideas and motivations
behind the theory developed in the book, together with an overview of its
contents, we introduce in Chapter 2 the concept of nonuniform exponential
dichotomy, which is central in our approach, and we discuss some of its basic
properties. Chapter 3 considers the problem of the robustness of nonuniform
exponential dichotomies.

In the second part of the book we discuss several consequences of local
nature for a nonlinear system when the associated linear variational equa-
tion admits a nonuniform exponential dichotomy. In particular, we establish
in Chapter 4 the existence of Lipschitz stable manifolds for nonautonomous
equations in a Banach space. In Chapters 5 and 6 we establish the smooth-
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ness of the stable manifolds. We first consider the finite-dimensional case in
Chapter 5, with the method of invariant families of cones. This approach uses
in a decisive manner the compactness of the closed unit ball in the ambi-
ent space, and this is why we consider only finite-dimensional spaces in this
chapter. Moreover, the proof strongly relies on the use of Lyapunov norms to
control the nonuniformity of the exponential dichotomies. As an outcome of
our approach we provide examples of C'! vector fields with invariant stable
manifolds, while in the existing nonuniform hyperbolicity theory one assumes
that the vector field is of class C'**t®. In Chapter 6 we consider differential
equations in Banach spaces, although at the expense of slightly stronger as-
sumptions for the vector field. The method of proof is different from the one
in Chapter 5, and is based on the application of a lemma of Henry to obtain
both the existence and smoothness of the stable manifolds using a single fixed
point problem. In addition, we show that not only the trajectories but also
their derivatives with respect to the initial condition decay with exponential
speed along the stable manifolds. A feature of our approach is that we deal
directly with flows or semiflows instead of considering the associated time-1
maps. In Chapter 7 we establish a version of the Grobman-Hartman theorem
for nonautonomous differential equations in Banach spaces, assuming that
the linear variational equation admits a nonuniform exponential dichotomy.
In addition, we show that the conjugacies that we construct are always Holder
continuous.

The third part of the book is dedicated to the study of center manifolds.
In Chapter 8 we extend the approach in Chapter 6 to nonuniform exponential
trichotomies, and we establish the existence of center manifolds that are as
smooth as the vector field. In particular, we obtain simultaneously the exis-
tence and smoothness of the center manifolds using a single fixed point prob-
lem. In Chapter 9 we show that some symmetries of the differential equations
descend to the center manifolds. More precisely, we consider the properties
of reversibility and equivariance in time, and we show that the dynamics on
the center manifold is reversible or equivariant if the dynamics in the ambient
space has the same property.

In the fourth part of the book we study the so-called regularity theory of
Lyapunov and its applications to the stability theory of differential equations.
We note that this approach is distinct from what is usually called Lyapunov’s
second method, which is based on the use of Lyapunov functions. In Chap-
ter 10 we provide a detailed exposition of the regularity theory, organized in a
pragmatic manner so that it can be used in the last two chapters of the book.
In Chapter 11 we extend the regularity theory to the infinite-dimensional
setting of Hilbert spaces. Chapter 12 is dedicated to the study of the stabil-
ity of nonautonomous differential equations using the regularity theory. We
note that the notion of Lyapunov regularity is much less restrictive than the
notion of uniform stability, and thus we obtain the persistence of the stabil-
ity of solutions of nonautonomous differential equations under much weaker
assumptions.
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1

Introduction

In the theory of differential equations, the notion of (uniform) ezponential
dichotomy, introduced by Perron in [69], plays a central role in the study of
stable and unstable invariant manifolds. In particular, consider a solution u(t)
of the equation v’ = F'(u) for some differentiable map F' in a Banach space.
Setting A(t) = d,, ;) F', the existence of an exponential dichotomy for the linear
variational equation

v = A(t)v (1.1)

implies the existence of stable and unstable invariant manifolds for the solu-
tion u(t), up to mild additional assumptions on the nonlinear part of the vector
field. The theory of exponential dichotomies and its applications are well de-
veloped. In particular, there exist large classes of linear differential equations
with exponential dichotomies. For example, Sacker and Sell [83, 84, 85, 82, 86]
discuss sufficient conditions for the existence of exponential dichotomies, also
in the infinite-dimensional setting. In a different direction, for geodesic flows
on compact smooth Riemannian manifolds with strictly negative sectional cur-
vature, the unit tangent bundle is a hyperbolic set, that is, they are Anosov
flows. Furthermore, time changes and small C'!' perturbations of flows with a
hyperbolic set also have a hyperbolic set (see for example [49] for details). We
refer to the books [24, 41, 46, 88] for details and further references related to
exponential dichotomies. We particularly recommend [24] for historical com-
ments. The interested reader may also consult the books [32, 33, 60]. On the
other hand, the notion of exponential dichotomy substantially restricts the
dynamics and it is important to look for more general types of hyperbolic
behavior.

Our main objective is to consider the more general notion of nonuniform
exponential dichotomy and study in a systematic manner some of its conse-
quences, in particular concerning the existence and smoothness of invariant
manifolds for nonautonomous differential equations. Also in the nonuniform
setting, we obtain a version of the Grobman-Hartman theorem, the existence
of center manifolds, as well as their reversibility and equivariance proper-
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ties, and an infinite-dimensional version of Lyapunov’s regularity theory with
applications to the stability of solutions of nonautonomous equations. In com-
parison with the classical notion of (uniform) exponential dichotomy, the ex-
istence of a nonuniform exponential dichotomy is a much weaker hypothesis.
In fact, perhaps surprisingly, essentially any linear equation as in (1.1), with
global solutions and with at least one negative Lyapunov exponent, has a
nonuniform exponential dichotomy (see Chapter 10 for details). We empha-
size that we always consider nonautonomous differential equations, and with
the exception of Chapters 5 and 10 the theory is systematically developed in
infinite-dimensional spaces. Another aspect of our approach is that we deal
directly with flows or semiflows instead of using their time-1 maps (with the
single exception of Chapter 7, where we establish a version of the Grobman-—
Hartman theorem). Our work is also a contribution to the theory of nonuni-
formly hyperbolic dynamics (we refer to 1, 2, 3] for detailed expositions of
the theory).

We discuss in this chapter the main ideas and motivations behind the
theory developed in the book. We also highlight some of the main results
and the relations with former work. We mostly follow the order in which the
material is presented in the book.

1.1 Exponential contractions

In order to describe the differences between the notions of uniform exponential
dichotomy and nonuniform exponential dichotomy, we first consider the case
when only contraction is present. We could replace contraction by expansion
simply by reversing the time.

Consider a continuous function ¢ +— A(t) with values in the n x n real
matrices for ¢ > 0. We assume that all solutions of (1.1) are global in the
future, that is, are defined for every t > 0. Let U(t, s) be the evolution operator
associated with equation (1.1). This is the operator satisfying

Ul(t,s)v(s) = v(t)

for every solution v(t) of (1.1) and every t > s. We assume in this section that
all Lyapunov exponents of solutions of equation (1.1) are negative, that is,

1
lim sup ry log||v(t)|| < O for each solution v(t) of (1.1). (1.2)
t—+o00

We say that U(t,s) is a (uniform) exponential contraction if there exist
constants a, ¢ > 0 such that

|U(t, s)|| < ce %) for every t > s.

We say that U(t,s) is a nonuniform exponential contraction if there exist
constants a, ¢ > 0 and b > 0 such that
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|U(t,s)|| < ce ?E=9Fbs for every t > s. (1.3)

Thus, a nonuniform exponential contraction allows a “spoiling” of the uni-
form contraction along each solution as the initial time s increases: while the
uniform contraction (given by a) is still present in (1.3), and is independent of
the initial time s > 0, we may have the additional exponential term e® (and
thus the nonuniformity along the solution). This means that even though in
both cases we have the exponential stability of solutions (due to (1.2)), in the
nonuniform case, in order that a given solution is in a prescribed neighbor-
hood, the size of the initial condition may depend on s (while in the uniform
case the size can be chosen independently of s).

The following statement is a simple consequence of Theorem 10.6 (the
proof of which is inspired in related work in [1]).

Theorem 1.1. If the equation (1.1) satisfies the condition (1.2), then the
associated evolution operator U(t, s) is a nonuniform exponential contraction,
for which the constant a is any positive number satisfying

a < — sup llmsup—log”v ), (1.4)
voER™ t—4o00 t

where v(t) is the unique solution of the equation (1.1) with v(0) = vy.

We note that the right-hand side of (1.4) is indeed positive (since the
limsup in (1.2) can only take a finite number of values; see Section 10.1).
In view of Theorem 1.1, the notion of nonuniform exponential contraction is
in fact as weak as possible, since all (exponentially stable) linear equations
originate an evolution operator having such a contraction. A similar behavior
occurs in the case of nonuniform exponential dichotomies (see Theorem 10.6).
Thus, in specific applications we never need to assume the existence of a
nonuniform exponential contraction (since this follows from (1.2)) but instead
we look for conditions on a and b which ensure the desired results. For example,
in general we are only able to establish the stability of the zero solution of
(1.1) under sufficiently small perturbations provided that b/a is sufficiently
small (see Chapter 12 for related results).

In view of this discussion it is also important to give a sharp estimate
for b. We refer to Section 10.3 for details; here, we consider only the case
of triangular matrices. The following statement is a simple consequence of
Theorems 10.6 and 10.8.

Theorem 1.2. If the matriz A(t) is upper triangular for every t > 0, then
the constant b can be any number satisfying

1 [t
b>Z(l}rB:1010p / k(T )dT—ltILnlIogtA ak(T)d'r),

where ay(t), ..., a,(t) are the entries in the diagonal of A(t).

See Chapter 11 for generalizations of Theorems 1.1 and 1.2 to infinite-
dimensional spaces.
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1.2 Exponential dichotomies and stable manifolds

We now consider the more general case of nonuniform exponential dichotomies.
These are composed of nonuniform contractions and nonuniform expansions
(see Section 1.1). We also present a first consequence of the existence of an
exponential dichotomy, namely the existence of invariant stable manifolds for
any sufficiently small perturbation.

Consider a Banach space X and a continuous function ¢t — A(t) such that
A(t) is a bounded linear operator on X for each ¢ > 0. We assume again that
all solutions of (1.1) are global in the future, that is, are defined for every
t > 0. Let T'(t,s) be the evolution operator associated with equation (1.1).
This is the operator satisfying

T(t,s)v(s) = v(t)

for every solution v(t) of (1.1) and every t > s. For simplicity of the exposition,
we assume that the evolution operator T'(t,s) has a decomposition in block
form

T(t,s) = (U(t,s), V(t, s))

into evolution operators with respect to some invariant decomposition X =
E®F (which is independent of the time t). We emphasize that in the remaining
chapters we do not assume that 7'(t, s) has a decomposition in block form.

We say that the equation (1.1) admits a nonuniform exponential dichotomy
if there exist constants A < 0 < g and a, b, K > 0, such that for every
t>s>0,

|U(t,s)|| < Ke*t=9)tas and  ||V(t,s)7Y| < Ke Ht=s)+bt, (1.5)

The constants A and p play the role of Lyapunov exponents, while a and b
measure the nonuniformity of the dichotomy. The assumption A < 0 means
that there is at least one negative Lyapunov exponent.

We now consider the equation

v =A(t)v + f(t,v), (1.6)

where the perturbation f(t,v) is a continuous function defined for ¢+ > 0 and
v € X, such that f(¢,0) = 0 for every t > 0 (and thus the origin is also a
solution of (1.6)).

The following is one of our main results on the existence of stable manifolds
for a nonautonomous differential equation, and is an immediate consequence
of Theorem 4.1.

Theorem 1.3. Assume that the equation (1.1) admits a nonuniform expo-
nential dichotomy, and that there exist ¢ > 0 and q¢ > 0 such that

1f(t,u) = F(t, )| < ellu = vl|(lull? + (o))
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for every t > 0 and u, ve X. If
Ada+(a+b)/g<0 and N+b<p, (1.7)

then there exists a Lipschitz function ¢: U — F, where U C Ry x E is an
open neighborhood of the line RE x {0}, such that its graph W C R x X has
the following properties:

1. (t,0) € W for every t > 0;
2. W is forward invariant under the semiflow ¥, on RS x X generated by
the autonomous system

=1, o =Atv+ f(t.v);

3. there exists D > 0 such that for every (s,u), (s,v) € W and 7 > 0, we
have

1@, (5. u) — W (s.0)]| < DA™ ||lu — v]|.

We refer to Section 4.2 for a detailed formulation. We observe that the
Lipschitz invariant manifolds constructed in Theorem 1.3 are in fact as smooth
as the vector filed. We refer to Chapters 5 and 6 for details.

Note that the first inequality in (1.7) is satisfied for a given a < |A| provided
that ¢, the order of the perturbation, is sufficiently large. Furthermore, both
inequalities in (1.7) are automatically satisfied when a and b are sufficiently
small. The “small” exponentials e *in (1.5), that are not present in
the case of a uniform exponential dichotomy, are the main cause of difficulties.
On the other hand, it turns out that the smallness of the nonuniformity is a
rather common phenomenon from the point of view of ergodic theory: almost
all linear variational equations obtained from a measure-preserving flow on
a smooth Riemannian manifold admit a nonuniform exponential dichotomy
with arbitrarily small nonuniformity (see Theorem 10.6).

Our definition of weak nonuniform exponential dichotomy in (1.5) is in-
spired in the notion of uniform exponential dichotomy and in the notion of
nonuniformly hyperbolic trajectory (see Sections 4.3 and 5.2). Our work is
also a contribution to the theory of nonuniformly hyperbolic dynamics. We
refer to [1, 3] for detailed expositions of parts of the theory and to the sur-
vey [2] for a detailed description of its contemporary status. The theory goes
back to the landmark works of Oseledets [65] and Pesin [70, 71, 72]. Since
then it became an important part of the general theory of dynamical systems
and a principal tool in the study of stochastic behavior. We note that the
nonuniform hyperbolicity conditions can be expressed in terms of the Lya-
punov exponents. For example, almost all trajectories of a dynamical system

as and e?

preserving a finite invariant measure with nonzero Lyapunov exponents are
nonuniformly hyperbolic.

Among the most important properties due to nonuniform hyperbolicity is
the existence of stable and unstable manifolds, and their absolute continuity
property established by Pesin in [70]. The theory also describes the ergodic
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properties of dynamical systems with a finite invariant measure absolutely
continuous with respect to the volume [71], and expresses the Kolmogorov—
Sinai entropy in terms of the Lyapunov exponents by the Pesin entropy for-
mula [71] (see also [55]). In another direction, combining the nonuniform hy-
perbolicity with the nontrivial recurrence guaranteed by the existence of a
finite invariant measure, the fundamental work of Katok [48] revealed a very
rich and complicated orbit structure, including an exponential growth rate
for the number of periodic points measured by the topological entropy, and
an approximation by uniformly hyperbolic horseshoes of the entropy of an
invariant measure (see also [50]).

Here we concentrate our attention on the stable manifold theorem. We first
briefly describe the relevant references. The proof by Pesin in [70] is an elabora-
tion of the classical work of Perron. His approach was extended by Katok and
Strelcyn in [51] for maps with singularities. In [80], Ruelle obtained a proof of
the stable manifold theorem based on the study of perturbations of products
of matrices in Oseledets’ multiplicative ergodic theorem [65]. Another proof
is due to Pugh and Shub in [78] with an elaboration of the classical work of
Hadamard using graph transform techniques. In [37] Fathi, Herman and Yoc-
coz provided a detailed exposition of the stable manifold theorem essentially
following the approaches of Pesin and Ruelle. We refer to [3] for further details.
There exist also versions of the stable manifold theorem for dynamical systems
in infinite-dimensional spaces. In [81] Ruelle established a corresponding ver-
sion in Hilbert spaces, following his approach in [80]. In [58] Mané considered
transformations in Banach spaces under some compactness and invertibility
assumptions, including the case of differentiable maps with compact deriva-
tive at each point. The results of Mané were extended by Thieullen in [92] for
a class of transformations satisfying a certain asymptotic compactness. We
refer the reader to the book [42] for a detailed discussion of the geometric
theory of dynamical systems in infinite-dimensional spaces.

We note that in the above works the dynamics is assumed to be of class
C1*= for some € > 0. On the other hand, in [77] Pugh constructed a C" diffeo-
morphism in a manifold of dimension 4, that is not of class C'*¢ for any ¢, and
for which there exists no invariant manifold tangent to a given stable space
such that the trajectories along the invariant manifold travel with exponential
speed. We refer to [3] for a detailed description of the diffeomorphism. Nev-
ertheless, although this example shows that the hypothesis € > 0 is crucial
in the stable manifold theorem it does not forbid the existence of families of
C' dynamics which are not of class C'*< for any € but for which there still
exist stable manifolds. Indeed, Theorem 5.1 implies the existence of invariant
stable manifolds for the nonuniformly hyperbolic trajectories of a large family
of maps that, in general, are at most of class C'. A detailed presentation is
given in Section 5.3.

There are some differences between our approach and the usual approach
in the theory of nonuniformly hyperbolic dynamics. In particular, we start
from a linear equation v = A(t)v instead of a linear variational equation



