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Preface

Theta functions apparently first appeared in the forms Y 77, mn’,
Yoo m!/2nintl) 1 §5me0  m1/2n(n+3) in the work of Jakob Bernoulli. In his work
on partition theory, Euler introduced a second variable { and studied func-
tions of the form [];> (1 — ¢"{)~'. For Euler, the primary objects were
partition functions such as [J(1 — ¢"), but the function [[(1 — ¢"{)~! was
considered as a function of { with g occurring as a parameter; after deriving
identities for the function of { he then set { = 1.

Jacobi made two important notational changes that turned out to be crucial
for the modern development. He replaced g by e™* and { by e%?; thus was
born the theta function in its present form

0(1 Z) _ Zem’nzr+2inz
s = .

The change from g to 7 allowed him to formulate the “imaginary transforma-
tion” 1 — —1/1, which together with the obvious transformation 7 — 7 + 2
leads to the modular group and eventually to the modern theory of modular
forms and their ramifications. (The formulation of the modular group in the
variable g is complicated; see the paper by Ehrenpreis in this volume.)

In addition, Jacobi studied (7, z) as a function of z in its own right. The
quasi double periodicity under z — z + 7 and z — z + n7 enabled him to
relate theta functions as functions of z to elliptic function theory. For Jacobi
as for Euler the primary working variable was z. Of course, this theory has
had far reaching generalizations to higher genera Riemann surfaces, abelian
varieties, etc.

Surprisingly, theta functions made their appearance in another case of
nineteenth century mathematics, namely mechanics. It was discovered by
Carl Neumann and Jacobi that certain mechanical (Hamiltonian) systems
could be explicitly integrated by means of theta functions. These ideas could
have formed the foundation of some of the modern ideas on KdV, KP, and
integrable systems in general, but the modern viewpoint seems to have been
discovered without knowledge of the eighteenth century results.

When the organizing committee met to discuss the possibility of a confer-
ence on theta functions, we saw how perfectly the notation 6(t, z) fit into a
three week conference: one week for 7, one week for z, and one week for the

ix



X PREFACE

comma. (This conforms to the above described three aspects of theta func-
tions that appeared in the nineteenth century.) The conference was thereby
organized accordingly. The first week was devoted to the comma, that is, to
the interplay of 7 and z. The sections on infinite analysis, integrable systems,
Kac-Moody algebras, lattice models, and physics are, roughly speaking, de-
voted to this interplay; the sections on Jacobi varieties, Prym varieties, and
algebraic geometry emphasize the z variable. These sections form Part 1 of
Volume 49. The sections on modular forms, number theory, and combina-
torics emphasize the t variable. They comprise Part 2 of Volume 49.

It was our hope in organizing the conference that the presentation of a cross
section of modern work on theta functions would enable mathematicians to
see where we stand now and in what directions we should go in the future.

Leon Ehrenpreis
Robert C. Gunning
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Proceedings of Symposia in Pure Mathematics
Volume 49 (1989), Part |

Systems of Linear Differential Equations
of Infinite Order:
An Aspect of Infinite Analysis

TAKAHIRO KAWAI

1. Introduction.

1.1. Although several years have elapsed since Professor M. Sato coined
the terminology “infinite analysis,” its exact content is not yet fixed. It is,
however, commonly accepted that the analysis of theta functions should be
its prototype. The purpose of this article is to describe one aspect of the
infinite analysis related to theta functions, i.e., analyzing the theta zero-value
by a system of linear differential equations of infinite order that it satisfies.
Another aspect of infinite analysis related to KP-hierarchy will be explained
by Sato’s contribution to this volume.

Let us begin our discussion by showing how linear differential operators of
infinite order in our sense appear in analysis. For the sake of simplicity, we
confine the discussion to the one-dimensional case in this subsection. Note
that a linear differential operator of infinite order is not an arbitrary sum of
infinitely many differential operators.

Let 0 be the origin of R C C, and let %o, and 24|, respectively denote the
space of hyperfunctions supported at 0 and that of distributions supported
at 0. Then it is known that

(1.L1) B0y =@(C\{0})/(C),
and that

(1.1.2) a representative of Dirac’s d-function d(x) in @(C\{0}) is
given by —1/2miz.
It is also well known that
(1.1.3) £ 0y consists of distributions of the form P(Dy)d(x), where
P({) =Y n o anl" is a polynomial of { € C.
1980 Mathematics Subject Classification (1985 Revision). Secondary 35N99, 46F15, 58GO07.
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4 TAKAHIRO KAWAI

Hence a distribution with its support at 0 has a representative of the form

(1.1.4) —%i (Zan—(;ﬁn‘"!)

in Z(C\{0}); in particular, it has only a pole at 0. On the other hand, an
element in @ (C\{0}) has the form

(1.1.5) Yo fizh+ ) ezt
g=1 k=0

with

(1.1.6) lim /| f;| =

and Y 32, 8« z* being in @ (C). We may rewrite Y721 fiz™/ in the form

(1.1.7) Zf,( 1) - (%)

Now let J({) denote the followmg infinite series:

(1.1.8) > gt
j=0 J

Then it follows from (1.1.6) that
(1.1.9) J({) is an entire function of {
and further that

(1.1.10)  J(¢) is of order 1 with minimal type, i.e., |J({)| < 4. exp(g|{])
for any ¢ > 0.

Actually (1.1.10) is equivalent to the following condition (1.1.11) on the
coefficients of the Taylor expansion E;";O h;¢’ of an entire function J({):

(1.1.11)  For each ¢ > 0, there exists a constant C, such that |h;| <
C.&’/j! holds for every j in N.

For such an entire function J({) and a holomorphic function ¢(z) defined
near z = zgp, we can define J(D;)¢(z) to be Z;’ZO th£¢>(z), which is again
holomorphic near z = zo. We call an operator J(D,) thus defined a linear
differential operator of infinite order and with constant coefficients. If we
replace the constant 4; by a holomorphic function 4;(z) defined on an open
neighborhood w of z, (independent of j) such that sup,, |#;(z)| is dominated
by C.e’/j! for each ¢ > 0, then we get a general linear differential operator
of infinite order (defined on w). One important property of such an operator
is that it has a local property in that it acts on the sheaf & of holomorphic
functions as a sheaf homomorphism. This property guarantees that it also
acts on the sheaf Z of hyperfunctions and the sheaf # of microfunctions as
sheaf homomorphisms. [See [K3] for the definition of these sheaves.] Note,
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however, that it does not act on the sheaf 27 of distributions, or even on
the sheaf of infinitely differentiable functions.

We know that linear differential operators of infinite order are intrinsically
defined on a (real) analytic manifold, and that they constitute a sheaf. The
sheaf is denoted by &' .

What has been observed so far may be summarized in a symbolic manner
as follows:

B0y : DAy
= {essential singularities at 0} : {pole singularities at 0}

(1.1.12) = {entire functions satisfying (1.1.10)} : {polynomials}
o = {linear differential operators of infinite order and with

constant coefficients} : {linear differential operators of
finite order and with constant coefficients}.

See [K3, p. 151] for the results in the higher-dimensional case. Note also that
the second equality can be understood as the Borel transformation.

1.2. The simplest example of a linear differential operator of really infinite
order is, probably,

et aZnDn
(1.2.1) cosh(av/D.) = Z i (a€C).

One of the most important dlSCOVCI‘lCS in [SKK] is that operators of this
sort are not an object of curiosity. Actually the so-called structure theorem
for systems of (micro)differential equations obtained in [SKK] requires the
essential use of operators of infinite order. Instead of going into the details of
this topic, we explain how they appear in a concrete example. This example
is, as might be easily surmised, closely tied up with the analysis of the theta
zero-value ), ., exp(niv?t).
Let us now consider the following equation on sz 9"

(1.2.2) <%‘ ;’)( ) Q.(9, )( )

where
(1.2.3) Q.(0)) = ( 0 l) (ceQ)
co, 0
and 9, = 8/90x, 0, = 9/0t. Needless to say, (1.2.2) is equivalent to
(1.2.4) { Ogu = o,
V = Oy U.

Throughout this subsection, we fix the constant ¢ (# 0) and omit the subscript
¢ in Q. in what follows:
Set

(1.2.5) W = exp(xQ) (: 3 ("Q)") .

|
rd n:




6 TAKAHIRO KAWAI

Then, using the relation

(1.2.6) 0 = (Cg' C‘;{),
we find
(1.2.7) = zoj ’;; ( ‘1’)

oo 2n+1
nx 0 1
+"Z I I (ca, 0)'
Then it is clear that each component of the matrix W is a linear differential
operator of infinite order (cf. (1.2.1)). It is also obvious that W is invertible,
because

(1.2.8) exp(xQ)exp(—xQ) = 1.
Further, we can easily verify

_ 0 0\ _(0x O
(1.2.9) w ((0 o, QW= 0 o)

Thus the equation (1.2.2) has been transformed into the direct sum of the
simplest equations of the sort, i.e., ,u = 0. This clear-cut result is obtained
only with the aid of operators of infinite order; it is impossible to obtain such
a result, if we use only operators of finite order.

1.3. Although it is a digression from our purpose, we mention another
interesting example which shows the usefulness of linear differential operators
of infinite order.

Let us consider the following ordinary differential equation with irregular
singularities:

(1.3.1) (x*D—-a)U=0 (aeC\{0}).

Then this equation is equivalent to the following equation with regular sin-
gularities, if transformations by linear differential operators of infinite order
are allowed:

(1.3.2) (’(; ;g) (5:) - 0.

The transformation is concretely given as follows:

1 *
(1.3.3) ( uD >= ﬁll(Z\/aD) —2vaDK{(2VaD) (w1>’
=X Io(2VaD) 2aDK;(2v/aD) w2
2aDK;(2VaD) 2vaDK;(2vaD)
(1.3.4) ("“): 1 ( “ >
wy —Io(2vaD) ﬁll(ZvaD) —xDu
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Here
() [ /2
L&) = (5) (Z:: I/+n+l))
and
Ki(©) = (<1750 10g (§) + Kl
wk+1)+wk+n+1) [\
(Z k!'(n+k)! (E) )
2r—n
<z<—1 (67,
where
n—1
v(n)= % -y (y: the Euler constant).
k=1

This phenomenon is most thoroughly studied for holonomic systems of
microdifferential equations by [KK]. See [M] and [U] for related topics.

2. Linear differential equations of infinite order.

2.1. In §1 we have shown that linear differential operators of infinite or-
der are natural and important in analysis. So far, however, we have not
discussed linear differential equations of infinite order. It was Sato [S] who
first observed the importance of such equations in analyzing transcendental
functions such as theta zero-value. In the next subsection, we will give the
explicit form of such equations in the case of the theta zero-value ¥(f) =
>, exp(miv?e).

2.2. Let P and Q respectively denote the matrix of linear differential
operators of finite order given as follows:

0 t
(2.2.1) E = (47:1 10, +1/2) 0)

(2.2.2) Q= (472'3, é)

Let ® and ¥ respectively denote expP — I (= Y .2, P"/n!) and expQ — I
(=352, Q"/n!). Then one can verify that both ® and ¥ are matrices whose
entries are linear differential operators of infinite order (cf. §1.2). Further-
more, using the commutation relation

(2.2.3) [Q, P] = 2mil,,
one can verify

(2.2.4) DY = Y.



