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Editorial Policy

§ I. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography. and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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*“ That is not said right,” said the Caterpillar.
“ Not guite right, I'm afraid,” said Alice, timidly;

“ some of the words have got altered.”

LEWIS CARROLL,
in Alice’s Adventures in Wonderland



PREFACE

The ideas in this work have had a long period of gestation, although the fuller
development and expression of them has occurred over a relatively short and intense
period. The dominant ideas emerged in an endeavour to answer the following question:
if f is a function in L2(IR™), how can the behaviour of its Fourier transform near the
origin of IR" be described and characterized? The corresponding question for the circle
group had been given a satisfactory answer by Gary Meisters and Wolfgang Schmidt in
1972, so the work also can be regarded as arising from an attempt to extend their result
from the compact case of the circle group to the non-compact case of IR". The answers
presented to these and related questions have implications for other areas of analysis; the
notable ones being the ranges of partial differential operators, and the behaviour of some
of the singular integral operators of classical analysis.

I have received a great deal of help and encouragment from many individuals, many
of whom are probably not aware of the positive effect they have had upon my carrying
out this work. Their input has been too multifarious and diverse for me to record them
all by name or to list all of the many ways in which their ideas or suggestions or actions
have been of aid to me.

There are, however, some for whom it is incumbent upon me to record their very
substantial and specific assistance. One of these was Igor Kluvdnek, who sustained an
interest in and an encouragment for this work over an extended period — in particular, since
late in 1990, when in an extended conversation in a Randwick restaurant, we discussed the
general question of the behaviour of the Fourier transform near the origin. As well, to the
extent that the present work is considered to emphasise clarity and precision of thought,
and is considered to be written in a way which shows respect and consideration for the
reader, I would like to think that the writing of it shows his positive influence which
extends back over a much longer period. His death in 1994 meant the loss of a close
friend who had also been a great intellectual influence upon me. Among my colleagues
at Wollongong, I am particularly indebted to Graham Williams and Keith Tognetti. The
former has provided me with invaluable opportunities for discussing many of the ideas in
this work, which is all the more appreciated because of the time which was freely given,
but which often could be ill-afforded. The latter has had an infectious enthusiasm and
openness to new ideas, which has also had an effect on my own more sceptical nature,
and this has been all to my own good. I am also indebted to Wai Lok Lo, who detected
several errors in various earlier versions of the manuscript.

As well, I am aware that my mathematical colleagues at Wollongong have played a
very positive, if indirect, role in this work, by maintaining an harmonious and intellectually
alive environment amongst themselves which has contributed in no small measure to
my capacity and opportunity to carry this work through to completion. Also, I have
been fortunate in receiving support directly from the Analysis Research Group at my
University, and indirectly from the Graduate Faculty. All of these have sustained me
during a period in which changing attitudes towards universities, and within them, have
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created difficulties of acceptance, understanding and appreciation of those disciplines and
researches primarily concerned with the basic understanding of phenomena and abstract
concepts.

I have been extremely fortunate with the dedication and attention to detail shown by
Carolyn Silveri in what has proved to be a long and demanding task of word-processing.
Her many suggestions have greatly added to the presentation of the completed work. I
am also indebted to Kerrie Gamble, who originally prepared the draft of Chapter IV.

The work has been completed in the face of many competing tasks, and the tolerance,
understanding, encouragement and support of my wife have been immeasurably important.
The good humour with which my children have borne both my absences and unavailability
for sufficiently many pastimes has also played its part in my completing this work. I am
also very grateful to my parents, who have invariably provided me with encouragement
in my work over many years.

Notwithstanding the help I have received from so many people, for any errors,
omissions or deficiencies in the work, the author should be considered responsible.

Rodney Nillsen,

August, 1994
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INTRODUCTION

1. Difference spaces

Let G be a Hausdorff locally compact group and let M(G) denote the space of
Radon measures on G. Let * denote the usual convolution of functions, measures and
distributions on G. Let 1 < p < oo and let X be a subspace of LP(G) or a space of
distribution on G with the property that M(G)+«+ X C X. If z € G let 6, € M(G)
denote the Dirac measure at . Then if § # S C M(G), the vector space D(X,5)
is defined to be the subspace of X consisting of all functions or distributions f in X
for which there exist m € IN, py, pto, ..., ptm € S and fy, fo,..., fm € X such that
f=37(fj = uj * f;). The space D(X, S) is called a difference space of X. In the
case when S = {6, : z € G}, the difference space D(X,S) is denoted by D(X).

A linear form L in the algebraic dual X' of X is said to be S-invariant if L(p* f) =
L(f) forall f € X and p € S. Equivalently, L is S-invariant if and only if L vanishes
identically on the subspace D(X,S) of X. If z € G and f € X, &, * f is called the
(left) translation of f by z. Note that if f € LP(G), (6, * f)(t) = f(z~'t), for almost
all t € G. A linear form L on X is said to be translation invariant if L(é6, * f) = L(f)
for all z € G and f € X. Thus, L is translation invariant if and only if L vanishes
identically on D(X). In fact, it is easy to prove, using a Hamel basis argument, that

D(X,S) = ﬂ{kernel of L:L € X'and L is S-invariant}. (1.1)

The preceding remarks make it clear that there is a close relationship between in-
variant linear forms on X and the corresponding difference space of X, and this is a
main reason for interest in the difference spaces. Historically, interest seems to have
centred more on the invariant forms associated with difference spaces, rather than with
the difference spaces themselves. This is perhaps because of the importance of invariant
integration in many different areas — for example, the Haar measure on G is the measure
arising from a positive linear form which vanishes identically on a difference space of
continuous functions which have compact support.

In particular, there is a large body of work on invariant linear forms on L*°(G). If
4 is a positive, continuous element of L>°(G)' and ||u|| = 1, then p is called a mean on
L>(G), and G is said to be amenable if L>°(G) has a translation invariant mean. The
theory of amenability on groups and other structures is now very extensive, and is the
subject of recent books by Paterson [49] and Pier [50].

The emphasis in this work is more upon invariant linear forms on L?(G) for 1 <
p < oo, and upon invariant forms on spaces F,(G) of abstract distributions on G which
are characterized by the property that their Fourier transforms are in LP( é ), where G is
the dual of G when G is abelian. Even more, the emphasis is upon the corresponding
difference spaces and upon closely related spaces known as generalized difference spaces.
In certain cases where G is abelian, the main results characterize, for example, a difference
space D(L%(G), S) as being isomorphic under the Fourier transform to a space LQ(CA}, i),
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where p is a non-negative measure on G. Such characterizations of difference spaces
suggest that these spaces are of interest quite apart from their connection with invariant
linear forms. A further reason for interest in these spaces, and the generalized difference
spaces, is that they also serve to characterize the ranges of certain types of differential
operators, including such familiar ones as the Laplace and wave operators. Also, they
shed light on the behaviour of some of the singular integral operators of classical analysis
such as the Riesz potential operators.

2. Differentiation, differences and the behaviour of the Fourier
transform near the origin
In numerical analysis, finite differences have long been used to give local approxi-
mations to derivatives. For example, if f : IR — IR is differentiable and if its derivative
D(f) € L*(R), consider z,y € IR with y near the origin, and let ¢ € L?*(IR) be the
function given by g(u) = —f(u)/y. Then D(f)(z) may be approximated by

fle+y) = f(z) _ (—y*xf=-F)z) _

(9 —6-y *g)(x).
y y

This suggests that, even globally, there may be a relationship between D(f) and differ-
ences of the form h — 6_, * h, for h € L*(IR) and y € IR.

A major motivation for the n-dimensional results presented here was to develop a
theory of difference spaces, or a theory of spaces related to such spaces, which would
suffice to characterize the ranges of a reasonably large class of partial differential opera-
tors. Each of these operators was envisaged as being defined on a suitable Sobolev-type
subspace of L2(IR™) (say), and the range of each one was envisaged as being a difference
space or some closely related space. The connection between these spaces and differential
operators comes via the Fourier transform and, because of the centrality of this idea to
this work, it is now described in more detail. The Fourier transform of f is denoted by
for fA.

If f € L?(R) let D(f) denote the derivative of f in the sense of Schwartz dis-
tributions. Consider f € L%(RR) such that D(f) € L*(R). Then f € L?(IR) and
D(f)MNz) = iz f(z), for almost all z € IR. Plancherel’s theorem then shows that
D(f)" is small near the origin in the sense that

[ DA @R,
o |2
In fact, it is easy to see that
D(L*(R))N L*(R) = {g : g € L*(R) and /00 Igl(xﬁzlz dz < oo} ; (2.1)

On the other hand, if f € L2(R) and y € R, (f — 6, * f)(z) = (1 — e7*=¥) f(a),



for almost all z € IR, so that

1—emizy|?

oo =8 * ANz 2 o
. TYN 2
oo sin — "
= [ =) ford,
2

o0
< y2/ F(@)Pdz, as |sinz] < |2,

—00

< oo.

It follows that for all A € D(L*(R)),
o |7 2
/ |h(z)] dz < 5,

|z|?

— 00

an observation originally made in 1973 by Meisters, who deduced from it that D(L*(IR))
is a proper, dense subspace of L?(IR) and that there are discontinuous linear forms on
L?(IR) which are translation invariant. More recently, the author has proved that, in fact,

2 2 > |’};(ﬂf)|2
D(L*(R))=<{ h:h e L*(R) and BB dz < o0 . (2.2)
This shows that the functions in L?(IR) which are in D(L?(IR)) are completely char-
acterized by the behaviour of their Fourier transforms near the origin. Equation (2.2)
also shows that D(L%(IR)) is a Hilbert space in the norm || - ||| given by [||f]|| =

o _ 1/2
([ 1R@P +1al)a )
A comparison of (2.1) and (2.2) shows that D(L?(R)) = D(L*(R)) N L*(R), a

result which describes D(L?(IR)) as the range of the differentiation operator D on the

Sobolev space consisting of those functions in L?(IR) whose derivatives are in L?(IR).

This Sobolev space is a Hilbert space in the norm || - || which is given by ||f]| =

/ |F(2)]2(1 + |z|*)dz)"/?, and the differentiation operator is an isometry from this
oo

space onto the space D(L?(IR)) in the norm ||| - |||. The theory of generalized multipli-
cation spaces and generalized difference spaces presented in Chapter II was motivated by
an attempt to extend this description of the range of the differentiation operator, and its
description as an isometry, to more general differential operators. Such results may be
regarded as putting the idea of approximating derivatives by finite differences within the
framework of functional analysis and operator theory.

The preceding discussion also establishes a connection between the range of the
differentiation operator D and invariant linear forms. For, since the range of D, when
D is restricted to the appropriate Sobolev subspace of L%(IR), is equal to D(L?(IR)), it
follows from (1.1) that

D(L*(R))N L*(R) = ﬂ{kemel of L: L € L*(R) and L is translation invariant}.
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A similar description is also valid for the ranges of differential operators belonging to a
class of operators which includes the Laplace and wave operators. To the extent that one
regards amenability as the study of invariant linear forms and associated concepts, such
results may be considered to establish a connection between amenability and the theory
of partial differential operators.

3. Multiplication spaces

Let G be a Hausdorff locally compact abelian group with dual G. Let F be a family
of complex valued Borel measurable functions on G. Then if 1 < p < oo, the vector
space M(LP(G), F) is defined to consist of those functions f defined almost everywhere
on G for which there exist m € NN, f1, fa,..., fm € F and ¢1,92,...,9m € LP(G)
such that f = Z;"zl fjg;. The space M(L?(G), F) is called a multiplication space of
LP(G). The Fourier transform changes convolutions into multiplications, so it follows
that if S C M(G),if F={1—p:p € S}andif 1 <p < oo, then the Fourier transform
is a bijection from D(F,(G), S) onto M(LP(@),F).

Corresponding to the generalized difference spaces are the generalized multiplication
spaces. The basic problem is to characterize a multiplication space, or a generalized
multiplication space of L?(G), as a space L?(G,v) for some measure v on G.

Characterizing a multiplication space of L?(G) in this way is usually easier than the
corresponding problem for difference spaces of LP(G). This is because characterizing
a space M(L?(G), F) is usually no harder than characterizing M(L?*(G), F), but the
Fourier transform is not generally a bijection from L?(G) onto a space L"(@), a fact
familiar from considerations arising from the Hausdorff-Young theorem (see [29, p.146],
for example). This difficulty is the motivation for introducing the spaces F,(G) of abstract
distributions on G, and for considering difference spaces of F,(G).

4. Arrangement of the work

Chapter I is largely concerned with multiplication spaces and sets, with difference
spaces and sets, and with the characterization of these in terms of the finiteness of cer-
tain integrals. The relationship between difference spaces and invariant linear forms is
discussed, the emphasis being on how the two types of object are related to each other.
The relationship between the multiplication and difference spaces is given by the Fourier
transform, and this raises the problem of constructing measures having a certain type of
prescribed Fourier transform. This is discussed for subsequent application.

In Chapter II are presented the basic characterizations of generalized multiplication
and difference spaces on IR". This leads to deeper and more useful characterizations
of these sets than was possible in the more general setting in Chapter I. Some sharp-
ness aspects of these characterizations are presented, duality aspects are discussed, and
the chapter concludes with discussions of other representations of some of the differ-
ence spaces, and with establishing a connection between these spaces and the theory of



wavelets.

Chapter III is concerned with applications to describing the ranges of various types
of partial differential operators in terms of the corresponding difference spaces. In this
formulation the operators are isometries from an appropriate Sobolev-type space onto
a corresponding generalized difference space. Applications to various singular integral
operators are discussed, including the Hilbert and Riesz transforms and the Riesz potential
operators.

Difference spaces of LP(G), where G is a locally compact group (not necessarily
abelian) and 1 < p < oo, are discussed in Chapter IV. Owing to the difficulty associated
with the Fourier transform in this more general setting, the results concentrate on com-
parison of difference spaces with each other, rather than with explicit characterizations as
were possible for IR". These results may be interpreted equally as results about various
types of invariant linear forms on L?(G).

Detailed references and comments are kept for the notes section at the end of each
chapter, except where they are considered essential for elucidating the main text.

The main aim of the work has been to present new results on difference spaces,
multiplication spaces, invariant linear forms and associated applications. However, every
effort has been made to make the whole work, and each chapter, as self contained as
seemed reasonable. It is hoped that this will enhance readability of the work. A reader
familiar with integration theory, Fourier theory and the theory of distributions on R",
should find Chapters II and III quite accessible. A reader familiar with basic harmonic
analysis on locally compact groups should find Chapters I and IV readily accessible. It
is hoped that the work as a whole will be of interest to graduate students and researchers
in the areas of Fourier analysis, abstract harmonic analysis, partial differential equations
and singular integral operators.

5. Notations and conventions

In this section are introduced some of the notations and conventions to be used.
The set of natural numbers is denoted by IN, the integers by Z, the real numbers by
IR, the complex numbers by C, and the circle group of complex numbers of modulus
one by T. The non-negative integers are denoted by Z,, and the non-negative reals by

IR,. The complement of a set A is denoted by A°. If A;, As,..., A, are sets, their
Cartesian product is denoted by H;;, A;, and this is abbreviated to A™ in the case that
A, = A, = ... = A, = A. The cardinality of the continuum is denoted by c¢. If f

is a given function, it is occasionally convenient to denote it alternatively by f(-). The
complex conjugate of a function f is denoted by 7.

If G is a Hausdorff locally compact group, i denotes a non-zero left invariant Haar
measure on G. If G is also abelian, G denotes the dual group of G. The identity of G is
generally denoted by e, and the identity of G (when G is abelian) is generally denoted by
¢. If G is abelian, the Fourier transform on L!(G), relative to some choice of a non-zero
Haar measure p¢, is given by f('y) = [Ffdug, for f € L'(G) and v € G. In general,
the Fourier transform of a function, distribution or measure x on G is denoted by i or
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u”. The inverse Fourier transform of a function, distribution or measure p is denoted by
Vv

pn.

If n € IN, R" is the corresponding n-dimensional Euclidean space. If z =
(z1,22,...,2n) € R" and y = (y1,Y2,..-,yn) € R", the inner product of = and
y is (z,y) = Yi_zjy;. Also, |z| is the Euclidean norm of z,|z| = (z,z)'/.
The usual Lebesgue measure on IR" is denoted by p, (thus pu, = “dz”), and the
Fourier transform on IR" is taken relative to p,. Thus, if f € LY (R™), f is given
by f(z) = g~ €™ fdpun, for all € R™.

Plancherel’s Theorem says that the Fourier transform may be extended from
LY(R™) N L*(R™) to all of L2(IR™) so that it becomes a linear bijection on L*(IR")
such that [ fgdpun = (27)™" [~ f Gdun for all f,g € L*(R™).

If p1, p2,. .., pun are measures, their product is denoted by ]_[;'=] /5, abbreviated to
u™ in the case py = po = ... = fin = p. Also, if ay,as,...,a, are numbers, H;’zl aj;
denotes their product. The symbol [| may therefore stand for any one of several different
products of sets, measures or numbers.

The space of infinitely differentiable complex valued functions on R" is denoted by
C°°6(1R"), and a function f € C*°(IR") is said to be rapidly decreasing if

(f) € L*°(IR"™) for all polynomials g and all 2y,125,..., 1 € IN.

pa Bat %
.’L‘,‘l 61‘,‘2 6I;l
The space of rapidly decreasing functions is denoted by S(IR"). If m,2y,12,...,1¢ € 2,

the mapping
o 0 5}

Bz, aT,-z"'aT,,«,(f)Hoo

fr—|a+ e

defines a seminorm on S(IR™). There is a countable number of such seminorms, and
S(IR™) is given the coarsest topology in which all such seminorms are continuous. This
makes S(IR™) a Fréchet space whose continuous dual S(IR™)* is the space of tempered
distributions on R™. If 1 < p < oo and f € LP(IR"), f can be identified with the
element of S(R™)* given by ¢ +— [p» fedpun, for ¢ € S(R™). Thus each space
L?(R™), for 1 < p < oo, can be regarded as a set of tempered distributions.

The Fourier transform is a linear homeomorphism on S(R"). If f € S(IR")*, the
Fourier transform fof f is in S(IR™)* and is given by the equation

~

fl¢) = f(p), for p € S(R").

In the case where f € L!(IR"), the previous definition of f is consistent with the present
definition of fwhen f is regarded as an element of S(IR™)*.

Further notations will be introduced as required. The book by Hewitt and Ross
[23] is a suitable reference for harmonic analysis on groups, and its notation is closely
followed here. The books by Rudin [54] and Schwartz [58] are very useful references for
the theory of distributions and Fourier analysis on IR". The book of Rudin is followed
more closely here as far as notation is concerned.

A reference in the text to Theorem 2.3, for example, refers to Theorem 2.3 in the
same chapter as the reference. Otherwise, the chapter is explicitly mentioned. The end
of a proof or example is indicated by O .



