X WINDOW SYSTEM

C Library and Protocol Reference

Robert W. Scheifler

James Gettys Ron Newman



X WINDOW SYSTEM

C Library and Protocol Reference

ALUERRAR

Robert W. Scheifler J

With Al Mento and Al Wojtas

EﬂEﬂEIIW Digital Press



Copyright © 1988 by The Massachusetts Institute of Technology and Digital Equipment
Corporation.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, photocopying, recording, or otherwise,
without written permission from the publisher.

Printed in the United States of America.
987654321
Order number EY-6737E-DP

Design: David Ford

Manuscript editor: Christie Williams

Production coordinator: Editorial Inc.

Index: Howard Burrows and Rosemary Simpson
Compositor: Black Dot Graphics

Printer: Murray Printing Company

DEC, DECnet, the Digital logo, ULTRIX, MicroVAX II, VAX, VAX-11, VAXstation,
VAXstation II/GPX, VAX/VMS, VMS are trademarks of Digital Equipment Corporation.

IBM, Personal Computer AT, Personal Computer RT are trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PostScript is a trademark of Adobe Systems Inc.

UNIX is a trademark of AT&T Bell Laboratories.

X Window System is a trademark of The Massachusetts Institute of Technology.

Library of Congress Cataloging in Publication Data

Scheifler, Robert W., 1954-
X window system.

Includes index.
1. X Window System (Computer system) 2. C (Computer
program language) 1. Gettys, James, 1953—
II. Newman, Ron, 1957- . 111, Title.
QA76.76.W56834 1988 005.4'3 88-30869
ISBN 1-55558-012-2




X1V

Acknowledgments

Xlib—C Library X Interface

The design and implementation of the first ten versions of X were primarily
the work of three individuals: Robert Scheifler of the MIT Laboratory for
Computer Science, Jim Gettys of Digital Equipment Corporation, and Ron
Newman of MIT, while at MI'T/Project Athena. X version 11, however, is
the result of the efforts of dozens of individuals at almost as many locations
and organizations. At the risk of offending some of the players by exclusion,
we would like to acknowledge some of the people who deserve special credit
and recognition. Our apologies to anyone inadvertently overlooked.

First, our thanks goes to Phil Karlton and Scott McGregor, both of Digital,
for their considerable contributions to the specification of the version 11
protocol. Susan Angebranndt, Raymond Drewry, Todd Newman, and Phil
Karlton of Digital worked long and hard to produce the sample server im-
plementation.

Next, our thanks goes to Ralph Swick (MI'T/Project Athena and Digital)
who kept it all together {or us. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm
good cheer was a foundation on which we could build.

Our thanks also go to Todd Brunhoftf (Tektronix) who was “loaned” to
MIT/Project Athena at exactly the right moment to provide very capable
and much-needed assistance during the alpha and beta releases. He was re-
sponsible for the successful integration of sources from multiple sites; we
would not have had a release without him.




Acknowledgments XV

Our thanks also go to Al Mento and Al Wojtas of Digital’s ULTRIX Docu-
mentation Group. With good humor and cheer, they took a rough draft and
made it an infinitely better and more useful document. The work they have
done will help many everywhere. We also would like to thank Hal Murray
(Digital SRC) and Peter George (Digital VMS) who contributed much by
proofreading the early drafts of this document.

Our thanks also go to Jeff Dike (Digital UEG), Tom Benson, Jackie
Granfield, and Vince Orgovan (Digital VMS), who helped with the library
utilities implementation; to Hania Gajewska (Digital UEG-WSL) who, along
with Ellis Cohen (CMU and Siemens), was instrumental in the semantic de-
sign of the window manager properties; to Dave Rosenthal (Sun Microsys-
tems) who also contributed to the protocol and provided the sample generic
color frame buffer device-dependent code; and to Tim Greenwood (Digital
IECG) for his help in understanding international keyboards and for pro-
viding the KeySyms in Appendix E.

The alpha and beta test participants deserve special recognition and
thanks as well. It is significant that the bug reports (and many fixes) during
alpha and beta test came almost exclusively from just a few of the alpha test-
ers, mostly hardware vendors working on product implementations of X.
The continued public contribution of vendors and universities is certainly to
the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate
Research at Digital, who has remained committed to the widest public avail-
ability of X and who made it possible to greatly supplement MI'T’s resources
with the Digital staff in order to make version 11 a reality. Many of the peo-
ple mentioned here are part of the Western Software Laboratory (Digital
UEG-WSL) of the ULTRIX Engineering group and work for Smokey Wal-
lace, who has been vital to the project’s success. Others not mentioned here
worked on the toolkit and are acknowledged in the X Toolkit documenta-
tion.

Of course, we must particularly thank Paul Asente, formerly of Stanford
University and now of Digital UEG-WSL, who wrote W, the predecessor to
X, and Brian Reid, formerly of Stanford University and now of Digital WRL,
who had much to do with W’s design.

Finally, our thanks go to MIT, Digital Equipment Corporation, and IBM
for providing the environment where it could happen.




XVl

X WINDOW SYSTEM

X Window System Protocol

The primary contributors to the X11 protocol are: Dave Carver (Digital
HPW); Branko Gerovac (Digital HPW); Jim Gettys (Digital SRC); Phil
Karlton (Digital WSL); Scott McGregor (Digital SSG); Ram Rao (Digital
UEG); David Rosenthal (Sun Microsystems); and Dave Winchell (Digital
UEG).

The implementors of initial server who provided useful input are: Susan
Angebranndt (Digital WSL); Raymond Drewry (Digital); and Todd Newman
(Digital).

The invited reviewers who provided useful input are: Andrew Cherenson
(Berkeley); Burns Fisher (Digital VMS); Dan Garfinkel (HP); Leo Hourvitz
(Next); Brock Krizan (HP); David Laidlaw (Stellar); Dave Mellinger (Inter-
leaf); Ron Newman (MIT); John Ousterhout (Berkeley); Andrew Palay (ITC
CMU); Ralph Swick (MIT/Project Athena and Digital); Craig Taylor (Sun
Microsystems); and Jeffery Vroom (Stellar).

Thanks go to Al Mento of Digital's UEG Documentation Group for
formatting this document.

This document does not attempt to provide the rationale or pragmatics re-
quired to fully understand the protocol or to place it in perspective within a
complete system.

The protocol contains many management mechanisms that are not in-
tended for normal applications. Not all mechanisms are needed to build a
particular user interface. It is important to keep in mind that the protocol is
intended to provide mechanism, not policy.

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

Jim Gettys

Systems Research Center
Digital Equipment Corporation
Ron Newman

Project Athena
Massachusetts Institute of Technology

September 1988




XVil

Introduction

The X Window System, or X, is a network-transparent window system. With
X, you can run multiple applications simultaneously in windows, generating
text and graphics in monochrome or color on a bitmap display. Network
transparency means that you can use application programs that are running
on other machines scattered throughout the network, as if they were run-
ning on your machine. Because X permits applications to be device indepen-
dent, applications need not be rewritten, recompiled, or even relinked to
work with new display hardware.

X provides facilities for generating multifont text and two-dimensional
graphics (such as points, lines, arcs, and polygons) in a hierarchy of rectan-
gular windows. Every window can be thought of as a “virtual screen” and can
contain subwindows within it, to an arbitrary depth. Windows can overlap
each other like stacks of papers on a desk and can be moved, resized, and re-
stacked dynamically. Windows are inexpensive resources; applications using
several hundred subwindows are common. For example, windows are often
used to implement individual user interface components such as scroll bars,
menus, buttons, and so forth.

Although you may think of yourself as a client of the system, in network
terms, the application programs you run are called clients and they use the
network services of the window system. A program running on the machine
with your display provides these services and so is called the X server. The
X server acts as an intermediary between you and the applications, handling
output from the clients to the display and forwarding your input (entered
with a keyboard or mouse) to the appropriate clients for processing.




XVIil

X WINDOW SYSTEM

Clients and servers use some form of interprocess communication to ex-
change information. The syntax and semantics of this conversation are de-
fined by a communication protocol. This protocol is the foundation of the X
Window System and is presented in Part IT of this book. Clients use the pro-
tocol to send requests to the server to create and manipulate windows, to
generate text and graphics, to control input from the user, and to communi-
cate with other clients. The server uses the protocol to send information
back to the client in response to various requests and to forward keyboard
and other user input on to the appropriate clients.

Because a network roundtrip is an expensive operation relative to basic re-
quest execution, the protocol is primarily asynchronous, and data can be in
transit in both directions (client to server and server to client) simultane-
ously. After generating a request, a client typically does not wait for the ser-
ver to execute the request before generating a new request. Instead, the cli-
ent generates a stream of requests that are eventually received by the server
and executed. The server does not acknowledge receipt of a request and, in
most cases, does not acknowledge execution of a request. (This is possible
because the underlying transport being used is reliable.)

The protocol is designed explicitly to minimize the need to query the win-
dow system for information. Clients should not depend on the server to ob-
tain information that the clients initially supplied. In addition, clients do not
poll for input by sending requests to the server. Instead, clients use requests
to register interest in various events, and the server sends event notifications
asynchronously. Asynchronous operation may be one of the most significant
differences between X and other window systems with which you may be
familiar.

For the best performance, when the client and the server reside on the
same machine, communication between them often is implemented using
shared memory. When the client and the server reside on different ma-
chines, communication can take place over any network transport layer that
provides reliable, in-order delivery of data in both directions (usually called
a reliable duplex byte stream). For example, TCP (in the Internet protocol
family) and DECnet streams are two commonly used transport layers. To
support distributed computing in a heterogeneous environment, the com-
munication protocol is designed to be independent of the operating system,
programming language, and processor hardware. Thus, you can use a single




Introduction XIX

display to run applications written in multiple languages under multiple
operating systems on multiple hardware architectures simultaneously.

Although X is fundamentally defined by a network protocol, most applica-
tion programmers do not want to think about bits, bytes, and message for-
mats. Therefore, X has an interface library. This library provides a familiar
procedural interface that masks the details of the protocol encoding and
transport interactions and automatically handles the buffering of requests
for efficient transport to the server, much as the C standard 1/0 library buft-
ers output to minimize system calls. The library also provides various utility
functions that are not directly related to the protocol but that are neverthe-
less important in building applications. The exact interface for this library
differs for each programming language. Xlib is the library for the C pro-
gramming language and is presented in Part I of this book.

The accompanying figure shows a block diagram of a complete X environ-
ment. Each X server controls one or more screens, a keyboard, and a point-
ing device (typically a mouse) with one or more buttons on it. There can be
many X servers; often there is one for every workstation on the network.
Applications can run on any machine, even those without X servers. An ap-
plication might communicate with multiple servers simultaneously (for ex-
ample, to support computer conferencing between individuals in different
locations). Multiple applications can be active at the same time on a single
server.

In X, many facilities that are built into other window systems are provided
by client libraries. You will not find specifications for things like menus, scroll
bars, and dialog boxes; nor will you find the interpretation of particular key
and button sequences in this book. The protocol and Xlib avoid mandating
such policy decisions as much as possible. You can view the protocol and Xlib
as a construction kit providing a rich set of mechanisms that can implement
a variety of user interface policies. Toolkits (providing menus, scroll bars, di-
alog boxes, and so on), higher-level graphics libraries (which might trans-
form abstract object descriptions into graphics requests, for example), and
user interface management systems (UIMS) can all be implemented on top
of Xlib. Although XIlib provides the foundation, the expectation is that appli-
cations will be written using these higher-level facilities in conjunction with
the facilities of Xlib, rather than solely on the “bare bones” of Xlib.

You can think of the total user interface as having two primary compo-




XX

X WINDOW SYSTEM

Application Application
GKS Library Pseudo TTY
Terminal
X VDI Emulator
X Library X Library
y
1

Mail
Application
Window .
Manager X Toolkit
X Library X Library
4 4
Network

X Network Protocol

A

X Server

Device Library

Keyboard 'Screen' iScreen

A

X Server

Device Library

Keyboard

LU

Screen

Figure 1. X window system block diagram

nents: the interaction with the user that is logically internal to an application
(for example, typing text into a text editor or changing a cell’s contents in a
spreadsheet) and the interaction that is logically external to an application
(for example, moving or resizing an application window or turning an appli-
cation window into an icon). The external user interface is built into many
other window systems, but this is not the case with X. The X protocol does
not define an external user interface at all. Rather, the protocol provides
mechanisms with which a variety of external user interfaces can be built.
These mechanisms are designed so that a single client, called a window man-
ager, can provide the external user interface independent of all of the other

clients.

A window manager can automatically:

e Provide title bars, borders, and other window decorations for each application

e Provide a uniform means of moving and resizing windows




Introduction XX1

« Enforce a strict window layout policy if it desires (for example, “tiling” the screen
so that application windows never overlap)
e Provide uniform icons for applications

e Provide a uniform interface for switching the keyboard between applications

With a suitable set of conventions, you can construct applications that are
insensitive to the external user interface provided by a window manager but
that run unmodified in multiple environments and still behave properly.

Because the protocol can deal with such a broad spectrum of user inter-
faces, no single program, toolkit, UIMS, or window manager is likely to use
all of the facilities the protocol and Xlib provide. Do not be concerned if you
do not understand why some facility exists; it may support a user interface
style with which you are not familiar.

Principles
Early in the development of X, we argued about what should and should not
be implemented in the server. For example, we did not know if menus or ter-
minal emulators could be implemented in the client with adequate perform-
ance or whether “rubber banding” (dynamically stretching a simple figure in
response to movement of the pointing device) would be acceptable when
performed across a network. Experimentation during the first months
showed us that more was possible than we had first believed.

These observations hardened into the following principles, which guided
us through the early X design:

¢ Do not add new functionality unless an implementor cannot complete a real
application without it.

e It is as important to decide what a system is not, as to decide what it is. Do not
serve all the world’s needs, but make the system extensible so that additional
needs can be met in an upwardly compatible fashion.

The only thing worse than generalizing from one example is generalizing from no
examples at all.

If a problem is not completely understood, it is probably best to provide no
solution at all.

e If you can get 90 percent of the desired effect for 10 percent of the work, use the
simpler solution.




XXl

X WINDOW SYSTEM

Isolate complexity as much as possible.

Provide mechanism rather than policy. In particular, place user interface policy in

the client’s hands.

The first principle kept the wish list under control. Just because someone
wanted something in the server, we did not feel obligated to add it. This kept
us focused on the important issues that made real applications work. This
principle was a somewhat more difficult touchstone to use during the design
of the present version of X, given its significantly larger audience. We modi-
fied the principle to be “know of some real application that will require it.”

At each iteration of the X design, there was always more to do than time
allowed. We therefore focused on mechanisms with the broadest applic-
ability and for which consensus in the group could easily be achieved. For
example, we focused on two-dimensional graphics, explicitly deferring
three-dimensional graphics.

At the same time, to avoid obsolescence, we designed the present version
of X to be extensible at both the protocol and library interfaces and without
requiring incompatible changes to existing applications. Examples of exten-
sions we had in mind were additional graphics models (such as PHIGS and
PostScript), real-time video, and general programmability in the server. (We
view programmability as simply one example of an extension, not as the sole
mechanism for extensibility; mere programmability does not give you sup-
port for video or high-performance support for graphics.)

During the design and implementation process, we generally suspected
that any problems were just the tips of large icebergs. Expending effort to
solve an immediate problem without first trying to generalize the problem is
usually a mistake; a tew related examples often make a whole class of prob-
lems obvious. This is not to say that we ignored the first instance of a prob-
lem; often there were adequate solutions using existing mechanisms.

We attempted to avoid solutions to problems we did not fully understand.
For example, the preliminary design for the present version of X supported
multiple input devices (more than just a single keyboard and mouse). As we
worked through the design, we realized it had flaws that would take signifi-
cant time and experimentation to correct. As a result, we removed this sup-
port from the system, knowing that correct support could be added later

through the extension mechanism.




Introduction ' XXl

We also tried to avoid winning a complexity merit badge. If we could get
most of what we needed with less complexity than a complete solution would
require, we were willing to compromise our goals. Only history will decide if
these tradeoffs were successful. Much of the existing complexity is a result of
providing support for external window management; most programmers
need not be concerned with this, particularly those using an X toolkit. We ex-
pected that toolkits would hide various forms of tedium from the program-
mer. For example, a program that displays “Hello World” with configurable
colors and font and obeys window management conventions is about 150
lines of code when written using only the facilities of Xlib; an equivalent pro-
gram written using a toolkit can have fewer than a dozen lines of code. Thus,
it is important to keep in mind that Xlib is only one layer in a complete X
programming environment.

Isolation of complexity is necessary in large systems. A system in which
every component is intimately related to every other becomes difficult to
change as circumstances change. We therefore attempted to build as much as
possible into client programs, introducing only the minimum mechanisms
required in the server.

Deciding what a system is not is as important as deciding what it is. For ex-
ample, at various times people urged that remote execution and general
interclient remote procedure call be integral parts of X. They felt there were
no established standards in these areas, and they wanted X to be a self-
contained environment. As is often the case, solving the immediate problem
by adding to the existing framework rather than by integrating into a larger
framework is less work, but the result 1s not satistactory for long. The X pro-
tocol is correctly viewed as just one component in an overall distributed sys-
tems architecture, not as the complete architecture by itself.

User interface design is difficult and currently quite diverse. Although glo-
bal user interface standards might someday be possible, we believed it pru-
dent to promote the cooperative coexistence of a variety of user interface
styles and to support diverse user communities and ongoing research activi-
ties. By separating window management functions from the server and from
normal applications and by layering user interface policy in higher-level li-
braries on top of Xlib, we allowed for experimentation without forcing all
users to be guinea pigs. As a result, many existing user interfaces have been




XXI1V

X WINDOW SYSTEM

imported into the X environment. Having a “pick one or roll your own”
policy instead of a “love it or leave it” one has drawbacks; the applications
developer must choose a user interface style and user community. You
should remember, however, that Xlib and the protocol is not an end but a
foundation.

History

X was born of necessity in 1984. Bob Scheifler was working at MI'T’s Labora-
tory for Computer Science (LCS) on a distributed system called Argus and
was in need of a decent display environment for debugging multiple distrib-
uted processes. Jim Gettys, a Digital engineer, was assigned to MI'T’s Project
Athena, an undergraduate education program sponsored by Digital and
IBM that would ultimately populate the campus with thousands of work-
stations.

Neither Digital nor IBM had a workstation product with a bitmap display
in 1984. The closest thing available from Digital was a VS100 display at-
tached to a VAX. Both Athena and LCS had VAX-11/750s, and Athena was
in the process of acquiring about 70 VS100s. VS100s were in field test at the
time, and the firmware for them was unreliable. Athena loaned one of the
first VS100s to LCS in exchange for cooperative work on the software. Our
immediate goal was clear: We needed to build a window system environment
running under UNIX on VS100s for ourselves and the groups we worked
for. We had little thought of anything beyond these goals, but wondered
where to begin. Little software was available elsewhere that was not encum-
bered by license or portability.

Paul Asente and Brian Reid, then both at Stanford University, had devel-
oped a prototype window system called W to run under Stanford’s V opera-
ting system. W used a network protocol and supported “dumb terminal”
windows and “transparent graphics” windows with display lists maintained
in the server. In the summer of 1983, Paul Asente and Chris Kent, summer
students at Digital’'s Western Research Laboratory, ported W to the VS100
under UNIX. They were kind enough to give us a copy.

The V system has reasonably fast synchronous remote procedure call, and
W in the V environment was designed with a synchronous protocol. The
port to UNIX retained the synchronous communication even though com-
munication in UNIX was easily five times slower than in V. The combination




Introduction XXV

of prototype VS100s with unreliable firmware and W using slow communi-
cation was not encouraging, to say the least; one could easily type faster than
the terminal window could echo characters.

In May of 1984, we received reliable VS100 hardware and firmware. That
summer, Bob replaced the synchronous protocol of W with an asynchronous
protocol and replaced the display lists with immediate mode graphics. The
result was sufficiently different from W that continuing to call it W was inap-
propriate and would cause confusion, as W was in some limited use at
Athena. With no particular thought about the name, and because the famil-
ial resemblance to W was still strong at that date, Bob called the result X.
Much later, when the name became a serious issue, X had already stuck and
was used by too many people to permit a change.

Development was rapid during the next eight months. The first terminal
emulator (VT52) and window manager were written in the CLU program-
ming language, the language of choice in the research group where Bob
worked. Bob continued development of the server and the protocol, which
went from version 1 to version 6 during this period (the version number was
incremented each time an incompatible change was made). Mark
Vandevoorde at Athena wrote a new VT'100 terminal emulator in C, and Jim
Gettys worked on Xlib and the UNIX support for starting the window sys-
tem. Late in 1984, we received faster VS100 firmware, causing the first
round of performance analysis and optimization. Within a few weeks, we
were again hardware limited, but we had a much better understanding of
performance issues.

By early 1985, many people inside Digital were using X, and plans were
underway for the first Digital UNIX workstation product, which was based
on the MicroVAX-II. At the time, support for UNIX in Digital was limited,
and there was no chance of getting any other window system except X on
Digital hardware. Other systems were either highly nonportable or were un-
available because of licensing problems (this was the case with Andrew). X
was the logical candidate. We had ported X version 6 to the QVSS display on
the MicroVAX. Ron Newman joined Project Athena at this time and worked
on documenting Xlib, already in its third major revision.

We redesigned X to support color during the second quarter of 1985, with
Digital’s eventual VAXstation-1I/GPX as the intended target. Although MI'T
had licensed version 6 to a few outside groups for a brief time at nominal




XXVI

X WINDOW SYSTEM

charge, a key decision was made in the summer of 1985 not to license future
versions of X. Instead, it would be available to anyone at the cost of produc-
tion. In September of 1985, version 9 of X was made publicly available, and
the field test of the VAXstation-I1I/GPX began. During that fall, Brown Uni-
versity and MIT started porting X to the IBM RT/PC, which was in field test
at those universities. A problem with reading unaligned data on the RT
forced an incompatible change to the protocol; this was the only difference
between version 9 and version 10.

During the fall, the first significant outside contributions of code to X
started to appear from several universities and from Digital. In January of
1986, Digital announced the VAXstation-1I/GPX, which was the first com-
mercial X implementation. Release 3 of X (X10R3) was available in February
and was a major watershed in X development. Although we were happy to
see a major corporation incorporate X into its product line, we knew the de-
sign was limited to the taste and needs of a small group of people. It could
solve just the problems we faced, and its hardware origins were still obvious
in key aspects of the design. We knew version 10 had inherent limitations
that would force major redesign within a few years, although it was certainly
adequate for developing many interesting applications.

Over the next few months, a strange phenomenon occurred. Many other
corporations, such as Hewlett-Packard, were basing products on version 10,
and groups at universities and elsewhere were porting X to other displays
and systems, including Apollo Computer and Sun Microsystems work-
stations. The server was even ported to the IBM PC/AT. Somewhat later,
Hewlett-Packard contributed their toolkit to the MI'T distribution.

We tired of hearing comments such as “We like X, but there is this one
thing you ought to change.” People were already declaring it a “standard,”
which was, to our thinking, premature. Before long, however, we were con-
fronted with a fundamental decision about X’s future. We seriously consid-
ered doing nothing; after all, X did almost everything we needed it to, and
what it did not do could be added without difficulty. Unfortunately, this
would leave many people using an inadequate platform for their work. In
the long run, X would either die because of its inadequacies, or it would
spawn wildly incompatible variations. Alternatively, based on feedback from
users and developers, we could undertake a second major redesign of X.

Although we were willing to do the design work, we knew that the result-




Introduction XXVil

ing design would be ambitious and would require much more implementa-
tion work than our meager resources at MI'T would permit. Fortunately,
Digital’s Western Software Laboratory (DECWSL) was between projects.
This group had the required expertse, including people who had contrib-
uted to pioneering Xerox window systems. More importantly, these people
were intimately familiar with X. Smokey Wallace, DECWSL’s manager, and
Jim Gettys proposed the implementation of version 11, which would then be
given back to MIT for public distribution without a license. Digital manage-
ment quickly approved the proposal.

We started intensive protocol design in May of 1986. No proprietary infor-
mation was used in the design process. Key contributors included Phil
Karlton and Scott McGregor of Digital. Dave Rosenthal of Sun Microsystems
was invited to join Digital engineers in the design team, and Bob Scheifler
acted as the chief architect. At the first design meeting, we decided it was not
feasible to design a protocol that would be upwardly compatible with version
10 and still provide the functionality essential for the range of display hard-
ware that had to be supported. With some reluctance, we abandoned com-
patibility with version 10 (although Todd Brunhoff of Tektronix has since
shown that one can build a reasonable “compatbility server” to display ver-
sion 10 applications on a version 11 server).

We carried out most of the actual design work using the electronic mail fa-
cilities of the DARPA Internet, which connects hundreds of networks
around the country, including MI'T’s campus network and Digital’s engi-
neering network. The entire group held only three day-long meetings dur-
ing the design process. During these meetings we reached a consensus on is-
sues we could not resolve by mail. Even with group members on opposite
coasts, responses to most design issues were only a few minutes away. A
printed copy of all the messages exchanged during this time would be a stack
of paper several feet high. Without electronic mail, the design simply would
not have been possible.

Once we completed a preliminary protocol design, we invited people from
other companies and universities to review the specification. By August, we
had a design ready for public review, which was again carried out using elec-
tronic mail, courtesy of the Internet. Design of the sample server implemen-
tation started at this time. Phil Karlton and Susan Angebranndt of DECWSL
designed and implemented the device-independent parts of the server, and




