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Preface

Nuclear magnetic resonance (NMR) spectroscopy has undergone an explosion in
the last two decades; it is now one of the most widely used analytical tools. Fur-
thermore, many laboratories are now equipped with sophisticated NMR instru-
mentation capable of performing a variety of powerful experiments in a
straightforward manner. However, much of the power afforded by these capabili-
ties is often not exploited because the average user does not have the knowledge
required to perform these experiments. In addition, there is a common miscon-
ception that all analytical problems can be solved by NMR. The purpose of this
book is to provide an overview of the strengths and weaknesses of various NMR
techniques so that researchers can make informed decisions regarding which, if
any, NMR experiments should be performed to address the problem at hand.

The contributors were chosen because of their expertise in various areas of
NMR spectroscopy. The goal is to provide practical, not theoretical, information
regarding the performance and interpretation of NMR experiments.

Not every NMR technique is discussed; the chapters are intended to cover
the most commonly used NMR methods. The references provide experimental de-
tails for each method.

i



iv Preface

This book should be suitable for anyone with some knowledge of NMR who
wishes to learn more about a given technique. It is ideal for a graduate student or
technician who wishes to gain insights into the practical aspects of NMR spec-
troscopy techniques. However, it is also suitable for experienced researchers who
want to learn about NMR techniques with which they have no prior experience.

Martha D. Bruch
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NMR Concepts

Daniel D. Traficante

University of Rhode Island
Kingston, Rhode Island

Nuclear magnetic resonance (NMR) rapidly became one of the most powerful an-
alytical techniques, used in many different fields of chemistry. Not only has its im-
portance been demonstrated in chemistry and physics, but the usefulness of NMR
imaging has rapidly spread throughout the world of medicine. This chapter at-
tempts to lay the foundation of NMR concepts, with the intention of providing a
background sufficient for understanding the underlying principles embodied in the
subsequent chapters of this volume.

1.1  NUCLEAR MAGNETIC MOMENTS
AND THEIR PROPERTIES

1.1.1  Spin Quantum Number, Nuclear Angular Momentum,
and Magnetic Quantum Number

Quantum mechanics predicts that the maximum observable component (pmax) of
the nuclear angular momentum (po) can have values that are only an integer num-
ber of half-multiples of modified Plank’s constant %, where i equals A/(2).
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Table 1.1  Nuclear Spins Associated with Even or Odd
Mass and Atomic Numbers

Mass number Atomic number Nuclear spin (/)
Odd Even or odd 345 ..
Even Even 0
Even Odd 1,2,3,...
= L =0,1,2,3
pmax—n'a'ﬁv n=24u.l,. . .. (la)
Prax — 1 () (1b)

Equation (1b) is obtained from Eq. (1a) by letting I = n - 3, where I is called the
spin quantum number. Only some nuclei possess the property of spin. Table 1.1
shows that a nucleus does not have spin if its mass number and atomic number are
both even.

Because pmax in Eq. (1a) represents the maximum component of the angular
momentum, / in Eq. (1b) represents the maximum value of the component of spin.
However, it is found that in a collection of like nuclei there are 2/ + 1 distinct
states in which the components have values equal to —I, (=1 + 1), (=1 + 2), ...
(I — 2),(I — 1), I These values are called the magnetic quantum numbers, m. In
other words, m is the complete set of values, but / is the maximum value in the set:
{ = mmax. Then, analogous to Eq. (1b), the observable components of p are

p; = mh (2)

which are shown in Table 1.2. In this table, the maximum component is I4 because
1 is the maximum component of the spin.

Table 1.2 Values of the Components of the Anguiar Momentum (p} and Magnetic
Quantum Numbers () in Terms of the Spin Quantum Number (/)

1 Components of p m
(Must be in 21+ 1 (These must remain (Magnetic
integral values (Total number between the maximum quantum
of §) of states) values —I and I} numbers)
3 2 —1,1 —5 %
1 3 ~-1,0,1 -1,0,1
3 4 =L === 1)1 -3 —%%.3
2 5 —1IL,—(—1,0,(— 1,1 -2,-1,0,1,2
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1.1.2 Nuclear Magnetic Moment

Many descriptions of the nuclear magnetic moment (W) begin by depicting the nu-
cleus as a tiny, positively charged sphere spinning around its axis. Then, accord-
ing to the familiar rules of electrodynamics in classical physics, the moving
electric field creates a magnetic field—the nuclear magnetic moment. The nucleus
is imagined to be a tiny magnet with north and south poles. According to classical
physics, the angular momentum L of a sphere with radius R, mass m, and spinning
with angular velocity w is

L= 2 R’mw 3)
5

However, the electron has a spin of 4, but all experimental evidence to date
indicates that an electron is a point particle with no spatial extent, i.e., R = 0. Ac-
cording to the above description, then, an electron should not have an angular mo-
mentum nor a magnetic moment, and EPR experiments should not be possible.
Furthermore, m = 0 for a photon, but its spin is 1. A neutron has no net change
(hence, no moving electric field), yet it has a magnetic moment! For an excellent
and very readable historical account of the development of the concept of spin, see
Ref. 1.

Once nuclear angular momentum has been successfully defined, we may
proceed to the concept of a nuclear magnetic moment. All experimental evidence
concerning the magnetic properties of nuclei is consistent with the hypothesis that
the magnetic moment p. is proportional to and parallel to the angular momentum
vector p. Hence, we may now define a maximum observable component of the
magnetic moment (JLmax} in terms of pmax.

Femax * Pmax (4)
Mmax = YPmax (5)

In Eq. (5), y is the constant of proportionality and is called the magnetogyric
ratio because it equals p (magneto) divided by p (gyric). It is sometimes, less ap-
propriately, called the gyromagnetic ratio. From Eq. (5) we may now write

B = YP; (6)
and, from Eq. (2),

p; = ym#h (7
Similarly, Egs. (1b) and (5) can be combined to give

Momax = VI (8)

Dividing Eq. (7) by Eq. (8) yields
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_ e ax

K = I 9

In most books and articles, pmax, Mmax, Pi» and m; are represented simply by
0. W, W and m, respectively, and these symbols will be used throughout this
chapter.

1.1.3 Interaction Between Two Conventional Magnets

As shown in Figure 1.1, if two magnets, A and B, are placed on a frictionless sur-
face such that their like poles face each other, there will be a force of repulsion that
pushes them apart. Conversely, if their opposite poles face each other, there will
be a force of attraction that pulls them together. Figure 1.1A represents the high
energy state (Ey) relative to the state in which only one magnet is present, or, when
the two magnets are infinitely far apart, Eo = 0. The force of repulsion that pushes
the two magnets apart depends on the strengths of the two magnets Ha and Hp,
and this force is represented by the energy of the higher state.

E, = H,Hy (10a)
Figure 1.1B depicts the low energy state E;:
E, = —H,Hy (10b)

The difference between these two energy states AE is the amount of energy re-
quired to turn over magnet B in Fig. 1.1B and place it in the position shown in Fig-
ure 1.1A:

AE = E, — E, = 2H,Hy (11)

Suppose now that a collection of small compasses (magnets B) are placed
on a table in the Earth’s magnetic field (magnet A). Further, suppose that the mag-
netic fields of the compasses (Hg) are very weak compared to the Earth’s field
(Ha), 1.e., Hay = Hg, and that the compasses are placed far enough apart so that the
magnetic field of one compass does not affect that of another. If the table is not
disturbed, all of the compasses will align themselves and point toward the north
pole. However, if the table is shaken, some of the compasses will receive enough
energy [Eq. (11)] to turn from their low energy states and peint toward the south
pole. If the table is shaken only slightly, only a few of the compasses will turn over;
but if shaken vigorously, many will receive enough energy to turn. Note that some
of those that have tumed to face the south pole will turn again to face the north
pole. Finally, if the table is shaken infinitely vigorously, the number pointing to
the south pole will equal the number pointing north.



