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Preface

The present volume collects a selection of revised papers which were
presented at the 21st Euro Working Group on Financial Modelling
Meeting, held in Venice (Italy), on October 29-31, 1997.

The Working Group was founded in September 1986 in Lisbon with
the objective of providing an international forum for the exchange of
information and experience; encouraging research and interaction be-
tween financial economic theory and practice of financial decision mak-
ing, as well as circulating information among universities and financial
institutions throughout Europe.

The attendance to the Meeting was large and highly qualified. More
than 80 participants, coming from 20 different Countries debated on
5 invited lectures and 40 communications in regular sessions.

The sessions were located at the Island of San Servolo, on the
Venetian lagoon, just in front of the Doges Palace. San Servolo Island
is a natural oasis, in the midst of a unique urban setting, offering great
relaxation in a peaceful park and a panoramic view of Venice. The
friendly atmosphere added great benefit to the formal and informal
discussions among the participants, -which is typical of EEW.G.F.M.
Meetings.

It is interesting to consider the story of the Meeting. The previous
locations were held at Cyprus, Crete and Dubrovnik - former mile-
stones of the Venitian Republic influence on the Mediterranean Sea.
Therefore, that this Meeting should be harboured in the heart of the
Republic itself (namely, the Saint Mark basin), was only a matter of
consequence.

Going back to the scientific activity of this Meeting, the main dis-
cussed topics were the following: corporate finance; asset price analysis;
fixed income securities; portfolio management; decision theory; artifi-
cial intelligence for finance; foreign exchange markets; financial deriv-
atives and insurance.

The papers presented in this book provide a representative, though
not complete sample of the fields to which the members of the working
group devote their scientific activity. Such activity is not only theoret-
ical but also practical because it tries to combine theoretic analyses
with empirical evidence. In every-day reality, as well as in the world of
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finance, no model is perfect or definite, but only more or less suitable
to explain and forecast the taking place of some phenomena.

The E.W.Group wishes to express its deepest thanks and appre-
ciation to the Dpt. of Applied Mathematics and Computer Science of
Venice University, which were responsible for the Meeting organization
and to the Italian National Research Council (C.N.R.) which offered
financial support for the printing of the present book.

A special acknowledgement should be given to Dr. Andrea Gamba
for his precious assistance to the editing and the typesetting of this
book with BTEX 2¢.

Venezia, March 1999 Elio Canestrelli
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Performance Evaluation of Algorithms for
Black-Derman-Toy Lattice

Jozsef Abaffy!***, Marida Bertocchil***, Jitka Dupacova?!, and
Vittorio Moriggia'*

! University of Bergamo,

Department of Mathematics,

Piazza Rosate 2, I-24129 Bergamo

voice: +39-35-277711, fax: +39-35-249598

Charles University Prague,

Department of Probability and Mathematical Statistics,
Sokolovska 83, CZ-186 00 Prague

voice and fax: +420-2-2323316

Abstract. Within the framework of sensitivity of the optimal value of the portfo-
lio management problem described in Dupacovad and Bertocchi (1996), Dupacova
and Bertocchi (1997) with respect to lattice calibration, we compare Bjerksund
and Stensland approximation algorithm, Kang Pan-Zenios algorithm and a modi-
fied Kang Pan-Zenios algorithm to generate short-rate interest rates tree according
to Black-Derman-Toy model. Numerical testing of the behaviour of the three algo-
rithms are given. The necessary inputs for Black-Derman-Toy model are yield curve
and log-yield volatilities: we provide an evidence on the relatively large sensitivity
of the parameters of the fitted lattice on the chosen volatility curve. The reported
numerical experience is based on data from the Italian bond market.

Keywords: Yield curve, volatility curve, BDT model, approximation and Newton-
Raphson algorithms.

1 Introduction

In the sensitivity analysis of the bond portfolio management problem,
that has been formulated as a stochastic program based on interest

* Partly supported by the Grant Agency of the Czech Republic under grants No.
201/96,/0230 and 402/96/0420 and by CNR grants n. 96.01313.ct10 and MURST
40% 1996-1997. Research partially supported through contract “HPC-Finance”
(no. 951139) of the INCO ’95 project funded by Directorate General 111 (Indus-
try) of the European Commission. We thank Credito Bergamasco and Crédit
Lyonnaise for providing implied volatility data and [.M.I. for keeping our bond
database constantly updated.

** abaffyQunibg.it
*** maridaQunibg.it
! dqupacova®karlin.mff.cuni.cz
* cmsvittOunibg. it



2 Jozsef Abaffy et al.

rate scenarios, see for instance Dupaéova and Bertocchi (1996}, Golub
and al. (1995), the main source of uncertainty comes from the evolution
of interest rates.

There are various models of evolution of interest rates; we consider
interest rate scenarios sampled from the binomial lattice obtained ac-
cording to Black-Derman-Toy (BDT) model (1990). The sensitivity of
the optimal function value of the portfolio problem with respect to
the methodology used for implementing BDT is one of open questions
that we want to study. In the literature there are various references
to methodologies for implementing BDT model: Kang Pan and Zenios
(1992) proposed to use Newton-Raphson steps in an iterative way,
Jamshidian (1991) and Rebonato (1996) refer to the use of forward
induction methodology and Bjerksund and Stensland (1996) suggest
new formulas to approximate the short term interest rate tree.

To fit the binomial lattice one needs the initial term structure which
consists of the yield curve and the volatility curve, i. e., of the yields and
standard deviations of logarithms of yields of zero-coupon government
bonds of all maturities covered by the horizon N of the designed bond
portfolio management model. To this purpose two main approaches
may be used, parametric and nonparametric one, see Dupatova and
al. (1997) for detailed discussion. In this paper we shall use linear
and nonlinear parametric regression techniques. The BDT model and
the inputs for it are discussed in Section 2. Section 3 gives a short
description of the considered algortihms. The numerical discussion of
the considered techniques is done in Section 4 based on real life data
from the Italian bond market.

2 Black-Derman-Toy model

The Black-Derman-Toy model (1990) is a one-factor model which as-
sumes that the short rate is locally lognormal, i.e. small change dr in r
during the interval dt is proportional to r, which guarantees the short
rate never becomes negative. See also Rebonato (1996) for detailed
comments on the model.

The discretized form of the model leads to a lattice that can be
fitted by matching the current market information. One important
feature of the model is that the path independent property in the
lattice is satisfied implying a recombining short interest rate tree with
up and down movements equally likely. The term structure of interest
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rates, required as an input for the Black-Derman-Toy model, consists
of the yields and of the log-yield volatilities valid for the zero-coupon
government bonds of all maturities.

The calibration of the binomial lattice in agreement with the (es-
timated) today’s market term structure, provides 2! interest rate
scenarios r® whose common first component equals ro and the subse-
quent components r; (valid for interval (n,n + 1], where n =1, ...,
N — 1), depend on scenario s.

One can express r2 as the product of r,g, the lowest short rate
that may occur at time n and ki (where {(s),! < n, is the num-
ber of up movements till time n) the volatility between two adjacent
short rates at time n. The lattice is completely defined by the vectors
ro= (7‘01, . .,TQN..I) and k = (kl, .. -1kN—1)-

2.1 Inputs for Black-Derman-Toy model

The uncertainty concerning the interest rate scenarios, prices and the
resulting optimal value of portfolio management problem stems mostly
from the input information used for calibration and fitting the binomial
lattice, namely, on the the initial term structure obtained from the
existing market data. The term structure consists of the yield curve
and the volatility curve, i. e., of the yields and standard deviations of
logarithms of yields of zero-coupon government bonds of all maturities
n=1,...,N.

To get the yield curve, one uses the observed yields of fixed coupon
government bonds traded on a given day and applies parametric or
nonparametric regression techniques.

Let the market information at the chosen date consist of the yields
¥i, + = 1,...,m of various fixed coupon government bonds (without
option) characterized by their maturities ¢;. The postulated theoretical
model

y;:g(t;;0)+e,~, i=1,...,m (l)

includes the yield curve g(t;8) of a prespecified parametric form where
t is usually expressed in years, y is the annualized yield to maturity
and 6 € © is a p-dimensional vector of parameters to be estimated.
Given the market data and the theoretical model of yields, the
parameters 6 are estimated by the least squares method. It means
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that the estimate § of the true parameter vector #* is obtained as a
solution of

m

min S(6) := Z(yi — g(t;6))? (2)

)
€ 1=1

The common assumption is that the residuals e; in (1) are inde-
pendent, with zero mean values and an equal unknown variance o?
which is estimated by

& = S(8)/(m - p) = S(6) /m

for large m.

Provided that the matrix G(6) of gradients Vgg(ti;0),i=1,...,m
is of full rank, the estimates @ from least square approximation are ap-
proximately normal, with the mean value equal to 8* and the covari-
ance matrix 022!, ¥ = G(#)TG(f) where o? is estimated by s%;
see, e. g., Seber and Wild (1988) for details. This allows to construct
approximate confidence intervals for components of the true §* and
an approximate distribution for g(¢; 9) This distribution is again ap-
proximately normal with the mean value g(t; 6*) and variance a2Q%(t),
where

Q%(t) = Vog(t; )T 2 Vg (t; ) (3)

As we mentioned above, in BDT we have to use as input values the
yields of zero coupon bonds of all required maturities which are not
directly observable. Hence, for each ¢ we replace these yields by their
estimates based on the estimated yield curve g(f;8). These estimates
are subject to error.

For the yield model we assume that the yield § of a zero coupon
government bond with maturity  equals

§=g(t6%) +¢&

with & ~ M(0, 0%) independent of ¢;,¢ = 1, ..., m. Then the differences
of yields corresponding to the estimated and to the true parameter
values are approximately normal

§ - 9(50) ~ N(0,0%(1 + Q*()) (4)

where Q?(f) comes from (3).
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Having tried different parametric nonlinear models, as reported in
Dupaéova, Bertocchi and Abaffy (1996), we chose to use a simple form
of the yield curve applied already in Bradley and Crane (1972)

y(t;6) = at’e™ (5)

We also applied the linearized version of Bradley and Crane’s model
using logarithms of the already computed yields to maturity as the
input and estimating the parameters lga, 8,7 by the least squares
method.

The techniques for obtaining volatilities of the yields are less ob-
vious and most of the authors work with implied volatility or with an
ad hoc fixed constant volatility, say V' (t) = V (see e.g. Hull and White
(1990), Heath et al. (1992)). In case of a constant volatility, however,
the model does not display any mean reversion, see Rebonato (1996).
We propose therefore to use the approximate standard deviations of
lg j , see Dupacové, Bertocchi and Abaffy (1996).

One can use also volatility curve built from historical data or from
implied volatilities; we refer to Kahn (1991), Kuberek (1992), Litter-
man et al. (1991), Dupacovd et al. (1997), Risk Metrics Technical
Document (1995) for discussions of various aspects of these different
techniques.

3 The three algorithms

The next step is calibration of the binomial lattice in agreement with
the (estimated) today’s market term structure. The algorithms that
we take in considerations for testing refer to Kang Pan and Zenios
(1992), Bjerksund and Stensland (1996) and Jamshidian (1991) and
our proposal for a modification of Kang Pan-Zenios procedure.

The Bjerksund-Stensland’s Backward Algorithm is characterized
by two closed formulas that generate an approximate short interest rate
tree. The idea behind relies on approximation of expected future short
rates (using risk-adjusted probabilities) by their corresponding implicit
forward rates and using a risk-neutral valuation for a contingent claim
to be evaluated at time step n along the tree.

As concerns Kang Pan and Zenios’ technique, our implementation
is slightly different because the nominal rate used to discount is not
compounded two times per year. Moreover, we suggest to use a new
strategy (Modified Kang Pan Zenios algorithm) that allows to compute
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Table 1.

Date n o« I} ~ means 8
Jun 24’92 28 .123 -.004 -.0053 4.e-08 2.e-06
Jun 03’93 34 .102 .011 .0038 6.e-09 2.e-06
Jun 13 94 47 .077 .135-.0099 1l.e-06 2.e-06
Jun 26 ’95 24 .102 .044 -.0019 -7.e-08 4.e-06
Jun 24 °96 57 .073 -.027 .0126 4.e-06 2.e-05
Apr 17 °97 60 .057 -.017 .0108 3.e-06 2.e-05

the components of vectors ro and k all together (that is to solve the
system of 2N — 2 non linear equations in 2V — 2 unknowns) instead of
getting a pair of components by repeated solution of a system of 2 non
linear equations in 2 unknowns (see end of Step 2). This allows us to
compare convergence and precision of Kang Pan-Zenios procedure and
to validate it. For details on these algortihms see Abaffy at al. (1997).

4 Numerical testing

All the numerical testing has been done on DEC 5000/240 workstation
under ULTRIX v.4.3 using C and Fortran 77 language. Routines for
solving nonlinear equations, nonlinear regression and systems of non-
linear equations come from IMSL and MINPACK library. Accuracy for
stopping rules has been set to 107°. Table 1 reports selected results
related to the yield curve obtained by nonlinear regression model (2)
and (5) applied for different dates in 1992-1997 using net yields from
the Italian treasury bonds (BTP) market to estimate the parameters
of the yield curve. The mean values of residuals can be found under
heading ”means”.

The condition number of X is of order 2-4, meaning that the matrix
is well-conditioned.

The results for the linearized version are reported in Table 2; the
estimated values of « are obtained from estimates of their logarithms.

The obtained estimates of parameters reported in Tables 1 and 2
are comparable and the plots of estimated yields /logarithms of yields
versus squares of estimated residuals do not indicate any linear trend
in the plot neither for the nonlinear nor for the linearized regression
for the considered dates that include a sufficiently large number of
observations. Both models seem to repeat the same pattern in the
plots and the same outliers can be identified. However, goodness of
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Table 2.

Date =n « B v RF &
Jun 24 ’92 28 .123 -.004 -.0055 .738 1.e-04
Jun 03 '93 34 .102 .011 .0040 .589 2.e-04
Jun 13 94 47 .076 .137 -.0101 .918 3.e-04
Jun 26 '95 24 .102 .043 -.0019 .792 4.e-04
Jun 24’96 57 .073 -.029 .0144 .369 3.e-03
Apr 17 ’97 60 .057 -.017 .0116 .351 4.e-03

024 ¢
0.22 \'"'HL

0.2 4
0.18 ¢
0.16 1 -

Bradley-Crans {iinesr)

0.14 1 81108633 moslls
012+
0.1 ¢+

0.08 1 4

0.06 4 BTdiey-CTomndN= IR T

0.04

0 5 10 15 20 25 30

Fig. 1. Volatility structure on April 17, 1997

fit test reported in Dupacové et al. (1997) supports application of the
linearized version.

The estimated approximate volatility curves are of similar char-
acter both for the nonlinear and the linearized model, see Figure 1.
Out of the two models the nonlinear one gives rather low volatilities
(yearly) in the range between 1% and 2% in the period 1992-95 and
5% and 7% in the period 1996-97; these volatilities are comparable
with the overall standard deviation of the log-yields which come from
the market prices of the traded bonds at the given day. The magni-
tude of volatilities obtained for the linearized Bradley -Crane model
is comparable (ranging from 3% to 8% in 1992-95 and 13% to 20% in
1996-97) with the magnitude of the implied volatilities. An approxima-
tion of the volatility curve by an exponential smoothing of the implied
volatilities has also been considered.

We report in Tables 3,4 complete results of the lattice, i.e. ry0
and k,, using the mentioned algorithms (forward case) for June 24,
1996. For Kang Pan-Zenios’ algorithm and for the modified one results
are identical. Time steps on the lattice correspond to multiples of six
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Table 3. Parameter values for different algorithms - June 24, 1996

Bjerksund and Stensland Kang Pan-Zenios and Modified B
time o kn o kn volatility
0 0.036643 1.000000 0.036643 1.000000 0.0
1 0.032038 1.230354 0.031974 1.234822 0.149148
2 0.028822 1.226743 0.028786 1.228161  0.148065
3 0.026112 1.224415 0.026088 1.225117 0.147217
4 0.023753 1.222556 0.023736 1.222984  (0.146486
5 0.021670 1.220944 0.021656 1.221241 0.145816
6 0.019812 1.219535 0.019801 1.219761 0.145192
7 0.018147 1.218270 0.018137 1.218453  0.144598
8 0.016645 1.217148 0.016636 1.217304  0.144027
9 0.015286 1.216167 0.015278 1.216305 0.143475
10 0.014051 1.215316 0.014043 1.215442  0.142939
11 0.012926 1.214576 0.012919 1.214694 0.142416
12 0.011895 1.214007 0.011888 1.214119  0.141907
13 0.010952 1.213259 0.010946 1.213637 0.141409
14 0.010086 1.213170 0.010080 1.213276  0.140921
15 0.009285 1.212999 0.009279 1.213104  0.140445
16 0.008547 1.212925 0.008541 1.213030 0.139979
17 0.007866 1.212965 0.007860 1.213071 0.139522
18 0.007231 1.213202 0.007225 1.213310 0.139076
19 0.006643 1.213561 0.006637 1.213673  0.138640

months and we cover till 10 years. The inputs are the yields obtained
by linearized Bradley and Crane model and volatilities obtained by
approximate standard deviation of lg y. Results for the backward cases
are identical.

Table 4 shows evidence that there is a large sensitivity of the para-
meters of fitted lattice on the chosen volatility curve. Increasing input
volatility implies an increase in parameter k, and a decrease in base
rate rpg. The strong influence appears in all the experiments we did.

Since now, we shall analyze the methods for date of April 17th,
1997; in this date we were able to collect some of implied volatili-
ties. Among the government bonds (with fixed coupons and without
options) , BTPs, traded on that day, we have excluded BTP36606 ma-
turing in two weeks horizon. In that date two bonds with very long
maturity (around 30 years) were quoted, see Dupacova et al. (1997)
for detailed comments on this day. The yield curves estimated accord-
ing to Bradley-Crane model and according to its linearized version are
plotted in Figure 2.
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Table 4. Bjerksund and Stensland algorithm - June 24, 1996

volatility=

0.15

volatility =

0.16

volatility=

0.20

time

'no

kn

o

kn

T'no

kn

(=

©C o0~ Wi~

0.036643
0.032017
0.028690
0.025848
0.023346
0.021116
0.019114
0.017308
0.015674
0.014191
0.012842
0.011614
0.010493
0.009470
0.008536
0.007681
0.006899
0.006184
0.005530
0.004931

1.000000
1.231812
1.231906
1.232071
1.232323
1.232669
1.233116
1.233670
1.234335
1.235117
1.236023
1.237059
1.238232
1.239550
1.241022
1.242656
1.244462
1.246452
1.248637
1.251031

0.036643
0.031773
0.028255
0.025263
0.022645
0.020326
0.018257
0.016403
0.014736
0.013233
0.011876
0.010647
0.009535
0.008526
0.007610
0.006778
0.006023
0.005338
0.004715
0.004151

1.000000
1.249055
1.249169
1.249376
1.249690
1.250123
1.250681
1.251372
1.252203
1.253181
1.254315
1.255613
1.257086
1.258744
1.260598
1.262662
1.264950
1.267477
1.270260
1.273319

0.036643
0.030802
0.026559
0.023025
0.020009
0.017406
0.015145
0.013173
0.011447
0.009932
0.008600
0.007428
0.006396
0.005486
0.004684
0.003979
0.003360
0.002817
0.002343
0.001930

1.000000
1.320478
1.320711
1.321152
1.321829
1.322762
1.323967
1.325464
1.327273
1.329414
1.331915
1.334802
1.338108
1.341869
1.346126
1.350926
1.356322
1.362379
1.369167
1.376770

[ Bradiey-Crane (non-linesr)]

15
years

20

25

Fig. 2. Term structure on April 17, 1997

30
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Table 5. Average CPU times (in seconds) - April 17, 1997

Case 2z2 Nz N approximation volatility

backward| 0.46 2.94 0.19 constant 0.10
0.46 2.85 0.27 constant 0.15
0.50 2,51 0.40 constant 0.20
1.24 413 0.98 s.d. of log yields

forward | 0.12 1.32 0.04 constant 0.10
0.11 1.94 0.06 constant 0.15
0.12 0.68 0.08 constant 0.20
0.92 2.01 0.82 s.d. of log yields

In Table 5 we report for linearized yield curve average computa-
tional times of the three algorithms in cases of constant volatility or
standard deviation of log-yields as input. The modified Kang Pan-
Zenios’ algorithm is definitely the worst, while Bjerksund and Stens-
land’s approach is the best. CPU time for modified Kang Pan-Zenios’
algorithm strongly depends from the chosen initial starting point. It is
evident that the forward approach is more than two times faster than
the backward one. Moreover, it is less demanding in term of memory
occupation. As to the accuracy of results for the linearized input, the
Kang Pan-Zenios and the Modified Kang Pan-Zenios algorithms give
identical results, but the computing time is much worst for the latter
one. The accuracy of Bjerksund and Stensland’s algorithm is compa-
rable with that of Kang Pan-Zenios, i.e., it is identical till 3rd decimal
digit in k, and 5th decimal digit in r.

5 Conclusions

Algorithms to calibrate Black-Derman-Toy lattice, i.e. Bjerksund and
Stensland (1996), Kang Pan-Zenios (1992) and Modified Kang Pan-
Zenios, have been compared both from accuracy and CPU times point
of view. For purposes of sensitivity analysis with respect to inputs in
the dynamic stochastic portfolio management as described in Dupacovi
et al. (1997), linearized regression model for the yield curve together
with Kang Pan-Zenios’ algorithm show up to be suitable.

As concerns volatility, evidence is given that BDT lattice parame-
ters are rather sensitive to volatility curve data. However, it appears
essential to search deeply into volatility aspects.
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