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Preface

One can hardly imagine something more usual in quantum
mechanics than the Schroedinger equation ; every textbook
starts from 1it. Nevertheless, at the beginning of its
seventh decade it still attracts a vivid interest and
stimulates a research work. It has been the main subject of
the conference whose summary is presented in this volume.

The development of quantum mechanics is characterized by the
growing role of rigorous methods. Already the pioneering
works of von Neumann, Kato and others showed that it was
advantageous to study the Schroedinger equation as an
operator problem in a suitable functional space. This
approach has later proven as a very fruitful one and the
theory of Schroedinger operators became a standard topic of
mathematical physics.

Of course, some people are used to claim that from the
physical point of view the non-relativistic quantum
mechanics is a (more or 1less) finished chapter, where one
can get new results by better computational methods, but
nothing physically surprising. We are convinced that the
meetings like ours help to demonstrate they are completely
wrong. Just the opposite is true : recent progress in the
theory of Schroedinger operators demonstrates that new
mathematical methods and interesting physical applications
g0 hand by hand.

In this process the notion of a Schroedinger operator itself
is gradually ©broadening. The core of the theory is
represented, of course, by the sort of "classical” problems
dealing with various deterministic and not very singular
potentials. Even here one can still find many unsolved
problems, in particular, concerning the spectral and
scattering properties of Hamiltonians of atomic and
molecular systems. Naturally, a part of the contributions to
our conference has been oriented at such problems, a
fortiori, if one of the pioneers of the Schroedinger
operator theory, Professor M.S.Birman, has been among the
participants together with some of his disciples.

At the same time, new physical problems and approaches
stimulated study of Schroedinger operators with point and
contact interactions, 1.e., distribution-like potentials,
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with stochastic potentials, Schroedinger operators on
complicated spatial regions, lattice analogues of
Schroedinger operators etc. ; we tried to cover this

diversity of generalizations in the conference title by the
word non-standard. We hope that the present volume provides
an up-to-date information about a substantial part of this
rapidly growing field.

The Dubna conference was a part of a recently started series
of meetings on mathematical physicse. Its aim is to use the
potential of East-West scientific exchange on a not very
official, rather working level. This channel has been nearly
cloged for a long time ; we hope that it will prove its
effectivity.

We want to thank Joint Institute for Nuclear Research for
providing conference facilities and Prof.A.Sisakian for his
support. We are particularly grateful to Dr.Nguyen Dao Dang
who has drawn the cover portrait of Erwin Schroedinger as
well as the excellent portraite of our main speakers which
accompany their lectures and convey, as we hope, something
of the conference atmosphere.

Dubna, February 1989

The editors
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INTERPOLATION ESTIMATES FOR THE NUMBER OF
NEGATIVE EIGENVALUES OF A SCHROEDINGER OPERATOR.)

M.S.Birman, M.Z.Solomyak

Leningrad State University
Leningrad, USSR

The problem of estimating the number N = N(V) of negative
eigenvalues of a Schroedinger operator from above can be
regarded now as a classical one. The results obtained before
1977 are reviewed in the book [1] (cf also the paper [2]);
among more recent works we mention the papers [3-6] and the
references contained therein‘q There is a growing interest
to the case of (negative) potentials V which do not fulfill
the condition

L] .
V e LD/Z(R ) ; m =3
(thie condition ensures a correct quasiclassical behavior of
the numbers N(aV) as a — o ). We are going to demonstrate
that the analyeis of the case

m
Ve Lm/z(R )

represents, 1in fact, an interpolation problem. In this way

#) Translated by the editors

#) Cf. also the contribution of Yu.V.Egorov to these proceedings



4

we are able to obtain easily the estimates derived recently
in the papers [4-6] - cf. the estimate (26) below. Moreover,
the interpolative approach yields estimates optimal with
respect to the coupling constant a - cf. the inequality
(35). Finally, we demonstrate that the interpolation makes
it possible to get an extensive family of estimates
containing a functional parameter. These results are useful
in the case of strongly anisotropic potentials. On the other
hand, it should be mentioned that interpolation usually does
not provide optimal constante in the estimates. This report
is sketchy; we shall not discuss here a number of related
problems where the interpolative approach can be also used.

1.We shall 1nvéstigate the Schroedinger operator
- A - V(x) (1)

in LZ(R”), m 2 3, with a potential V decaying at infinity
(precise assumptions about V will be formulated below). The
number of negative eigenvalues of the operator (1) will be
denoted as N(V). We suppose V(x) = 0, in the opposite case V
should be replaced in the estimates of N(V) by its positive
part V, . In addition to (1), we shall discuss the spectrum
of the quadratic-form ratio

—I(—‘;:’—T%d_ » u e Rl(lkm) (2)
u | “dx

1, .m, _ 1 m
X (R7) = { u € Hloc(R )
J 19?2 + x]7%1u|? yax < © } (3)

The set xl(m“), m 2 3, represents a complete Hilbert space
with respect to the scalar product



J Vv ax

The corresponding norm is equivalent to the norm defined by
the integral in (3). We remark also that the set Cg(Rn) is
dense in kl(Rm).

Let Ak denote the succesive maxima of the ratio (2). In

other words, kk is an eigenvalue of the operator T(V)

associated with the norm
_ 2
(Vu,u) = [V |u|“dx
in the Hilbert space “J(Rm). The equality
N(V) = card{ k; kk > 1} =: n(V)
is established in the standard way (cf., e.g., [71,[2]). For
any assumptions about the potential V, therefore, estimation
of N(V) is reduced to estimation of the quantity n(V).
After we have passed to the spectral problem for the ratio
(2), it is convenient to generalize its setting and suppose
that V is a complex-valued function. The operator T(V) is

then, generally speaking, non-selfadjoint; it is essential
that the map

n: V— T(V) (4)
is linear.

Let B and S°° denote the sete of bounded and compact
operators respectively. For T € Sm we set

v(8;T) = card { k : ‘k(T) >8} ; 8>0 (5)
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where Sy = sk(T) are successively ordered singular numbers
[8] of the operator T. Instead of »(s,T(V)) we shall write
v(s,V). If V(x) > 0 and the corresponding constant a > 0,
then

N(V) = n(V) = »(1;V)
1 (6)
V)

N(aV) = n(aV) = v(a
Hence the problem is reduced to estimation of the function
v(s;V).

2.Below we apply the complex and real interpolation methods.
Let us describe the corresponding scales of spaces and the
action of interpolation functors.

Lorentz spaces La r(w). Let w be a measurable almost
)

everywhere, finite and positive function on r™ , and let p =

pw be the measure determined by the weight y, i.e.,

p(8) = [y dx
=3
With each function f on R® which is almost everywhere finite
we associate a non-increasing function on R+:

He(s) = p{ x € R®: |£(x)| >&} , p = Py

By definition, f belongs to Lo r(w) for 1 £ r £ ®, if the
quantity

@
lf|£ (w) = J‘(Bﬂé/a(s))r S-lds , 1 <r<ow (7)
o,r
! 0
el o= sup s im0 (8)

o,® 8>0



