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Preface

This volume contains selected papers from WADT 2004, the 17th International
Workshop on Algebraic Development Techniques. Like its predecessors, WADT
2004 focussed on the algebraic approach to the specification and development
of systems, an area that was born around the algebraic specification of abstract
data types and encompasses today the formal design of software systems, new
specification frameworks and a wide range of application areas.

WADT 2004 took place at the Technical University of Catalonia (UPC),
Barcelona, Spain, on 27-29 March 2004, and was organized by Fernando Orejas
and Jordi Cortadella.

The program consisted of invited talks by Luis Caires (Universidade Nova de
Lisboa, Portugal) and Reiko Heckel (University of Paderborn, Germany), and
33 presentations describing ongoing research on main topics of the workshop:
formal methods for system development, specification languages and methods,
systems and techniques for reasoning about specifications, specification develop-
ment systems, methods and techniques for concurrent, distributed and mobile
systems, and algebraic and co-algebraic foundations.

The Steering Committee of WADT, consisting of Michel Bidoit, José Fi-
adeiro, Hans-J6erg Kreowski, Peter Mosses, Fernando Orejas, Francesco Parisi-
Presicce, and Andrzej Tarlecki, with the additional help of Christine Choppy
and Till Mossakowski, selected several presentations and invited their authors
to submit a full paper for possible inclusion in this volume. All submissions
underwent a careful refereeing process. We are extremely grateful to all the
referees who helped in reviewing the submissions: H. Baumeister, L. Caires,
A. Cherchago, R. Heckel, R. Hennicker, F. Jacquemard, R. Klempien-Hinrichs,
C. Liith, S. Merz, W. Pawlowski, and L. Schroder.

This volume contains the final versions of the 14 contributions that were
accepted. It contains also the invited paper of Reiko Heckel, co-authored with
Sebastian Thone.

The workshop was jointly organized with IFIP WG 1.3 (Foundations of Sys-
tem Specification), and received generous sponsorship from the following orga-
nizations:

— Spanish Ministry of Science and Technology (MCYT)

— Catalan Department for University, Research and Information Society
(DURSI)

— Technical University of Catalonia (UPC)

David Banyeres, Robert Clariso, Kyller Costa, Nilesh Modi, Jiangtao Meng,
Nikos Mylonakis, Sonia Perez, Edelmira Pasarella, and Elvira Pino provided
invaluable help throughout the preparation and organization of the workshop.
We are grateful to Springer for its helpful collaboration and quick publication.



VI Preface

Finally, we would like to announce that, starting in 2005, WADT will join
forces and reputations with CMCS, the International Workshop on Coalgebraic
Methods in Computer Science, to create a new high-level biennial international
event: CALCO, the Conference on Algebra and Coalgebra in Computer Science.

December 2004 José Fiadeiro, Peter Mosses, Fernando Orejas
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Behavior-Preserving Refinement Relations
Between Dynamic Software Architectures

Reiko Heckel! and Sebastian Théne?

! Department of Computer Science
2 International Graduate School Dynamic Intelligent Systems,
University of Paderborn, Germany
{reiko, seb}Qupb.de

Abstract. In this paper, we address the refinement of abstract architec-
tural models into more platform-specific representations. For each level
of abstraction, we employ an architectural style covering structural re-
strictions on component configurations as well as supported communica-
tion and reconfiguration operations. Architectural styles are formalized
as graph transformation systems with graph transformation rules defin-
ing the available operations. Architectural models are given as graphs to
which one can directly apply the transformation rules in order to simulate
operations and their effects.

In addition to previous work, we include process descriptions into our
architectural models in order to control the communication and recon-
figuration behavior of the components. The execution semantics of these
processes is also covered by graph transformation systems.

We propose anotion of refinement which requires the preservation of both
structure and behavior at the lower level of abstraction. Based on formal
refinement relationships between abstract and platform-specific styles,
we can use model checking techniques to verify that abstract scenarios
can also be realized in the platform-specific architecture.

1 Introduction

In the development of complex software systems, a model of the software ar-
chitecture [30] allows for early reasoning on the system at a high level of ab-
straction. An architectural model covers the involved run-time configuration of
system components, the communication between these components, and possible
reconfiguration operations that enable the system to react to upcoming require-
ments and events. Such dynamic architectures gain increasing attention in the
context of e-business, self-healing, and mobile systems.

Since software architectures! are intended to bridge the gap between system
requirements and implementation, they have to conform to both business-driven
requirements as well as restrictions and mechanisms imposed by the chosen run-
time infrastructure. In order to integrate both aspects, we propose a stepwise
refinement approach starting with an abstract, business-level architecture which

! We use the term software architecture as a synonym for the model of an architecture.

J.L. Fiadeiro, P. Mosses, and F. Orejas (Eds.): WADT 2004, LNCS 3423, pp. 1-27, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 R. Heckel and S. Thone

can be derived from user and business requirements. This business-level archi-
tecture is then refined into a more concrete description which also integrates
platform-specific aspects like supported reconfiguration operations and commu-
nication mechanisms.

A recent example of this general principle of model refinement is the Model-
Driven Architecture (MDA) [26] put forward by the OMG. Here, platform-
specific details are initially ignored at the model-level to allow for maximum
portability. Then, these platform-independent models are refined by adding de-
tails required to map to a given target platform. At each refinement level, more
assumptions on the resources, constraints, and services of the chosen platform
are incorporated into the model.

Similarly, as described in a previous paper [3], we use architectural styles [2],
formalized as graph transformation systems, for defining the assumptions on a
certain level of platform abstraction, i.e., the vocabulary, structural constraints,
and available communication and reconfiguration mechanisms. Then, an archi-
tecture at a certain level of abstraction has to conform to the corresponding
architectural style.

In our previous work, we applied the available style-specific reconfiguration
and communication operations to an architecture without further control. In
this paper (see Section 4), we provide an extension which allows the definition of
processes and their operational semantics. These processes control the order in
which available operations are invoked by the individual software components.
This leads to a more detailed picture of the architectural behavior.

We do not consider architectural refinement as the internal decomposition of
components into subcomponents, as done by other authors, but rather focus on
porting an abstract architecture to a more platform-specific level which usually
requires additional platform-related entities and resources. For this purpose, we
define different architectural styles for different levels of platform abstraction,
namely a generic, platform-independent style for business-level architectures and
a more specific style for architectural models at the platform-specific level.

When refining software architectures from the abstract to the concrete level,
we have to preserve both structural and behavioral properties. This leads to the
following two requirements:

1. Architectural consistency: After being ported to the lower level of ab-
straction, the concrete architecture has to satisfy the same functional re-
quirements as the abstract architecture. Therefore, we have to refine config-
urations of components, connections, and other resources in a way that all
business-relevant entities of the abstract architecture are also preserved at
the concrete level.

2. Behavior preservation: Similarly, the concrete architecture has to preserve
the abstract communication and reconfiguration behavior. In particular, we
require that all business-relevant scenarios of the abstract architecture are
also realizable in the concrete architecture.

While porting the abstract behavior to the platform-specific level we have to
respect the capabilities of the chosen target platform according to its reconfigu-



Behavior-Preserving Refinement Relations 3

ration and communication mechanisms. In many cases, depending on the current
situation where an operation is to be applied and the effects of preceding actions,
the refinement of an abstract action varies from other situations and cannot be
decided locally. Thus, we believe that behavior preservation cannot be solved by
a fixed syntactic mapping between abstract and concrete operations but has to
be dealt with at a semantic level.

Further requirements include a high degree of reusability which means that
the refinement relationship between certain levels of platform abstraction should
not only apply for one specific system, but should be reusable for other archi-
tectures as well.

Since refinement is not an easy task and thus error-prone and cost-intensive if
done by hand, we are also aiming at tool support. However, it is difficult to auto-
mate the construction of refined architectures, because this is a creative process,
and computers cannot invent details for the concrete level that are not exis-
tent at the abstract level. Nevertheless, we intend to investigate tool support for
checking if a concrete architecture satisfies the formal refinement relationship we
prescribe for the refinement from abstract to concrete level. Combined with user
interaction for modifying invalid concrete models, we achieve a semi-automated
approach for creating refined architectural models.

The refinement relationship, as already proposed in [5], is style-based meaning
that it is defined between two architectural styles rather than between individual
architectures. Since this relationship can be applied to any instances of the styles,
we achieve the desired degree of reusability.

To check for architectural consistency, we have to compare the business-
relevant entities of the abstract and the concrete model. For this purpose, we
use an abstraction function which lifts concrete models to the abstract style. To
check for behavior preservation, we have to prove that all states of an abstract
scenario are also reachable in a corresponding concrete scenario, preferably with
the help of model checking techniques. For this purpose, we employ a contravari-
ant translation function which transforms abstract states into requirements for
states at the platform-specific level. A model checker can then search for concrete
states satisfying these requirements.

The rest of this paper is organized as follows. We survey related work in
Section 2. In Section 3, we revisit the modeling of architectural styles based on
graph theory, and in Section 4 we extend the proposed architecture description
technique by processes for controlling architectural behavior. In Section 5, we
use this formal framework to define our notion of refinement under the obliga-
tion of architectural consistency, and Section 6 covers the problem of behavior
preservation by a semantic requirement that can be checked by model checking
tools. Section 7 concludes the paper.

2 Related Work

Refinement is a long-known design principle in software engineering. First ideas
in the context of program development go back to Wirth [34]. In the sense of
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a systematic top-down methodology, he argued for the expansion of high-level
program instructions to lower level macros and procedures.

While Wirth mainly investigated sequential programs, the refinement of con-
current systems became popular as action refinement in the context of process
algebras (cf. [17] for a survey on this topic). This field considers the refinement
of abstract actions into sequences of concrete actions, also called processes, and
the potential interleaving of multiple concurrent processes.

Our approach is different from this work for two reasons. First, we want to
avoid a fixed, sometimes even syntactically defined substitution of an abstract
action by a concrete process wherever the abstract action occurs. Instead, we
are aiming at a more flexible notion of refinement which also allows for alternate
refinements of an action depending on the context where the action occurs.
Second, we also want to enable refinement in those cases where the two levels
of abstraction are so different that it becomes hard to relate the corresponding
actions with each other.

Apart from action refinement, we also have to mention the different notions
of refinement in the field of software architecture. For instance, Batory et. al. [6]
consider feature refinement which is modifying models, code, and other artifacts
in order to integrate additional features with every refinement step. Different
to this work, Canal et. al. [9] consider refinement as the decomposition of a
software component into subcomponents and the specialization of components
under certain compatibility conditions.

In our case, we neither want to add any extra-functionality to the architecture
nor to look into the internals of the components, but we rather want to port a
business-level architecture to a more platform-specific level considering all the
restrictions and mechanisms of the chosen target platform.

Refinement of architectures in this sense has first been discussed by Moriconi
et al. in [25]. Building a formalization in first-order logic, the authors describe
a general approach of rule-based refinement replacing a structural pattern in an
abstract style by its realization in the concrete style. The approach is related to
ours, but focuses on refinement of the structure only and does not take reconfigu-
ration and communication behavior into account. Also, applying the logic-based
theory to concrete architecture description languages is not trivial. The general
idea of rule-based refinement, however, is applicable in our context, too.

Garlan [16] stresses the fact that it is more powerful to have rules operating
on architectural styles rather than on style instances. He formalizes refinements
as abstraction functions from the concrete to the abstract style. We use a similar
approach to define refinement relationships (see Section 5). Also, he argues that
no single definition of refinement can be provided, but that one should state
what properties are preserved. In our case, we concentrate on the preservation
of architectural consistency and the dynamic semantics of reconfiguration and
communication scenarios.

Other proposals on architecture refinement like [1, 12] concentrate on struc-
tural refinements only, which is complementary to our work. The only formal
approach we are aware of that considers refinement of dynamic reconfiguration
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can be found in [8]. But, the paper only sketches the ideas without any concrete
definition. Moreover, the approach is targeted on the translation from one Archi-
tecture Description Language to another rather than on the refinement between
architectural styles that represent different levels of platform abstraction.

Since we use graph transformation systems as the underlying formalism to
describe dynamic software architectures, which is in the tradition of [21, 22, 24,
31, 33], it is also worth to look at existing work on refinement of graph transfor-
mation systems. The general idea is to relate the transformation rules and, thus,
the behavior of an abstract graph transformation system to the rules of a more
concrete transformation system. One can judge these refinement relationships
along a continuum from syntactical relationships to more semantical ones.

GroBe-Rhode et. al. [18], for instance, propose a refinement relationship be-
tween abstract and concrete rules that can be checked syntactically. One of the
conditions requires that, e.g., the abstract rule and its refinement must have the
same pre- and post-conditions except for retyping. Based on this very restrictive
definition they can prove that the application of the concrete rule expression
yields the same behavior as the corresponding abstract rule. The draw-back of
this approach is that it cannot handle those cases where the refining rule ex-
pression should have additional effects on platform-specific elements that do not
occur in the abstract rule. And, similar to action refinement, the approach does
not allow alternate refinements for the same abstract rule.

Similarly, the work by Heckel et. al. [20] is based on a syntactical relation-
ship between two graph transformation systems. Although this approach is less
restrictive as it allows additional (platform-specific) elements at the concrete
level, it is still difficult to apply if there are no direct correspondences between
abstract and concrete rules. Moreover, their objective is to project any given
concrete transformation behavior to the abstract level and not vice versa.

In our work, we propose a more flexible, semantic-based notion of refinement.
We do not define a fixed mapping between the various transformation rules but
only between the structural parts of the graph transformation system. Then, we
check whether all system states of an abstract model are also reachable at the
concrete level, no matter by which order of transformation rules. By avoiding the
functional refinement mapping between transformation rules, we can also relate
transformation systems with completely different behavior, and we are flexible
enough to cope with alternate refinements.

3 Graph Transformation Systems as Architectural Styles

As already introduced in [3], we use architectural styles as conceptual platform
models. Such a platform model has to define the vocabulary of elements to be
considered, to restrict the possible relationships among those elements, and to
specify communication as well as reconfiguration mechanisms supported by the
platform. We use different styles for different levels of platform abstraction.

In this section, we present the formal definition of architectural styles as typed
graph transformation systems [10] together with two exemplary styles, namely
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an abstract style for business-level architectures and a platform-specific style for
service-oriented architectures. In Section 5, we explain how a refinement relation-
ship between these styles can be used to refine business-level architectures, which
abstract from platform-specific vocabulary and restrictions, to service-oriented
architectures.

Informally, a typed graph transformation system consists of (1) a type graph
to define the vocabulary of architectural elements, (2) a set of constraints to
further restrict the valid models, and (3) a set of graph transformation rules
for communication and reconfiguration operations. A system architecture that
conforms to a given style is represented as an instance graph of the type graph.

Definition 1 (Graph and Graph Morphism). A graph is a tuple G =
(N, E, src,tar) with a set N of nodes, a set E of edges, and functions src,tar :
E — N that assign source and target nodes to each edge. A graph morphism
f=(fn,fE) : G — G’ is a pair of functions fy : N — N’ and fg : E — E'

preserving source and target (src’ o fg = fy o src and tar’ o fg = fn otar).

Definition 2 (Typed Graph). Given a graph TG, a TG-typed graph (G, tpg)
is a graph G equipped with a structure-preserving graph morphism tpg : G — TG.
We call TG type graph and (G, tpg) instance graph over T'G. The category of
TG-typed instance graphs is called Graphp.

The graphs we use are directed and unlabeled; for the sake of clarity, nodes
(and edges) can be named by unique identifiers. Type graphs can be represented
by UML class diagrams and instance graphs by UML object diagrams [19]. The
typing morphism tp¢ is depicted by referencing the type names. As an example,
Figure 1(a) shows the type graph of the business-level style we have defined
in [4]. Figure 1(b) shows a corresponding instance graph.

/ Of,
1 Component- a:Component- T
Component —— o Instance Instance A:Component
supports
ppos owns|'
ro?des ' 01 A-Port:PortType
4 ..
'“‘e@_‘:l PortType }—‘—xr[ Port
] requires 5
A
¥ |defines A [allows connects| 2 send's AB-Conneglor e
:Connector ———

defines

Operation M - :Conneclor
p 0:1| Connector|, o Connection Fag 0P
- i Of. - -
Dy Port 25 B-Port:PortType | |22:0peration
Message -
receives

a) owns

supports

b:Component- | i Of g
T Instance B:Component
(a) type graph (b) instance graph

Fig. 1. Type graph and exemplary instance graph of the business-level style
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According to this type graph, architectures consist of Componentinstances
which externalize their functionalities through Ports. They can interact with each
other through a Connection between their Ports. The state of a communication
is encoded by Request and Response message nodes.

Besides the elements for run-time configurations, the type graph also defines
nodes for the application-specific types of these elements. For example, Compo-
nent, PortType, and Connector nodes can be used to describe certain types of
components, ports, or connections; PortTypes are characterized by provided and
required Interfaces. This way, a corresponding instance graph incorporates both
the actual configuration at a certain run-time state as well as application-specific
type information about the involved entities.

For example, the instance graph in Fig. 1(b) defines a system that consists of
an instance a of component A and an instance b of component B. Both component
instances own a port of type A-Port and B-Port respectively, which could be
connected by an instance of the AB-Connector. The A-Port provides the interface
Int with the operation op, while the B-Port requires this interface.

Along with the type graph comes a set C of constraints that further restricts
the set of valid instance graphs. Simple constraints already included in the class
diagram are cardinalities that restrict the multiplicity of links between the el-
ements (omitted cardinality means 0..n by default). More complex restrictions
can be defined, e.g., using expressions of the Object Constraint Language (OCL),
which is part of the UML.

Graph transformation. Graph transformation rules [13] are used to define rewrit-
ing operations on graphs. Since our instance graphs represent system configu-
rations, transformation rules nicely fit to define reconfiguration operations pro-
vided by the platform. If we encode communication-related information into
the graphs, as done by the Message node and its subtypes in Fig. 1(a), then
transformation rules are also suitable to represent communication mechanisms.
A certain reconfiguration and communication scenario can be modeled as a se-
quence of transformation rules which are applied to an initial instance graph.
The set of meaningful sequences can be restricted by additional control processes
as discussed in Section 4.

Formally, a graph transformation rule r : L ~ R consists of a pair of TG-
typed instance graphs L, R such that the intersection L N R is well-defined (this
means that, e.g., edges which appear in both L and R are connected to the same
vertices in both graphs, or that vertices with the same name have to have the
same type, etc.). The left-hand side L represents the pre-conditions of the rule
while the right-hand side R describes the post-conditions. The left-hand side can
also state negative pre-conditions (negative application conditions, NAG).

According to the Double-Pushout semantics (DPO [14]), the application of a
rule 7 is performed in three steps, yielding a transformation step G = H:

1. Find an occurrence oy, of the left-hand side L in the current object graph
G. Formally, this is a total graph morphism oy : L — G which maps the
left-hand side L to a matching subgraph in G. The occurrence is only valid,
if o1, (L) cannot be extended by the forbidden elements of a NAG.



