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Preface

In a large number of well-known universities, the mechanical sciences
(applied mechanics, mechanical systems dynamics and control, aero and
hydro mechanics, elasticity, etc.) have separated from mechanical engineer-
ing departments into independent teaching units or have joined the systems
sciences. There are serious arguments for doing so, but there is also definite-
ly at least one substantial negative in such an action, and that is the resulting
lack of cooperation between technological-production oriented engineering
and its fundamental counterpart, mechanical systems dynamics. The
technologists miss out on a broader scope of options and thus on flexibility
in design, and the theoreticians lose reference to real problems. The gap
widens as it spreads from research to teaching and then to textbooks, and
this may well impede future development.

Robotics, quite naturally developed so far by the production oriented
groups, begins to suffer from the above fate, particularly in view of its
growing need to be applicable almost everywhere. Not only must
manipulators be automatically controlled to reach from A to B, but they
must also be made to follow a stipulated smooth path, avoiding various sta-
tionary or moving obstacles. In addition they are required to do this quite
accurately in a specified time and space and at high speed, in cooperation or
competition with other machines or other manipulators for that matter.
Often they also need to do it optimally with respect to perhaps several cost
functionals.

These tasks should be achieved while working in a variable environment
and subject to various, frequently uncertain, dynamic payloads and hence
also to unknown dynamical structural forces. Manipulators must thus be
stabilized and made robust against unpredictable conditions, as well as
capable of attaining the objectives mentioned. This yields a need for feed-
back and adaptive controllers, as well as perhaps a self-organizing struc-
ture.

Such manipulators become a complex, strongly nonlinear and strongly
coupled system with many degrees of freedom. Control based on a linearized
or otherwise simplified model loses effectiveness to the degree that the real
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working procedure deviates from the conditions assumed for simplification.
This can lead to displacements of a manipulator from the desired trajectory
in spite of all control efforts. It can even make the motion of the
manipulator incompatible with such a trajectory, for instance, if the
equilibria of the real nonlinear system do not coincide with the single
equilibrium of the linearized model.

All of the above requires delving more deeply into rather sophisticated
basic research in control and systems dynamics, not only to use it but also to
extend it or at least to adjust it for our purposes. It means the situation in
development of manipulators has matured to fundamental studies, and
there is a need to investigate which part of the wide range of control
dynamical results can be applied.

There are several excellent textbooks on robotic manipulators which at-
tempt and largely succeed in presenting the material in a unified way with
some of the above in mind—for example, Paul [1], Coiffet [1], and Snyder
[1]; however, they stop on ‘‘unfinished’’ problems currently under research
or requiring research. That is exactly where we would like to start, in-
dicating to the postgraduate student or design engineer which branches and
topics in control and systems dynamics are applicable and perhaps sug-
gesting appropriate methods. Obviously no book can pretend to do the
above regarding all the topics involved either in manipulator theory or in its
control system mechanical background. The selection must be a matter of
what seems to be more urgently needed (judging by its research popularity)
and obviously biased by the experience and preferences of the author and
his circle of collaborators.

We refer briefly to various existing and possible models (Chapter 1) and
energy relations needed later (Chapter 2), and introduce elementary
nonlinear controllability and stabilization conditions (first part of Chapter
3). Then we discuss control under uncertainity, both ‘‘worst-case design”’
and adaptive, referring first to stabilization (Chapter 3), then to various
elementary objectives like reaching, real-time reaching, maneuvering, cap-
ture (handling) and optimal capture of an object (target), planned path
tracking, and model reference adaptive control (Chapter 4). Avoidance of
stationary and moving obstacles is the next main topic (Chapter 5). We
close with adaptive identification of states and parameters (Chapter 6).
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Chapter 1

Mechanical Models

1.1 MODULAR RP-UNIT MANIPULATOR

The robot manipulators may be presently modeled as complex (branching)
open or closed chain machines, but for the sake of basic dynamic studies they
still are best considered consisting of simple open kinetic chains of n material
links, each link with a single degree of freedom (DOF), connected together by
joints. Such a manipulator may have more than n DOF, the additional due to
orientation of the base and the gripper, but the DOF of the links are
fundamental to our study. The joints are either revolute (rotational) coded R,
or prismatic (translational) coded P. So it seems that a modular two-link R P-
unit manipulator with two DOF, one rotation and one translation, can serve a
twofold purpose: as a unit for composing up a suitable machine, and as an
instructive example for studying both dynamics and control in the general
case. It also seems that some fundamental notions of our study are best
introduced and explained first on such an example.

Figure 1.1 displays the set-up. The link 1 is posed at the base with underlying
revolute joint 1, the link 2 is connected to the first by a prismatic joint 2.
Obviously the order of joints could have been reversed without influencing the
generality. The mass of each link and of the corresponding joint is lumped into
the mass pointm;, i = 1,2, located at theend of a link, the first mass at the fixed
distance r, from the joint 1, the second at the variable distance r. The mass m,
rotates about the joint 1 and the mass m, translates together with the link 2
respective to the link 1, the motion allowed by the joint 2. These DOF are
measured in terms of either Cartesian or Langrangian coordinates, the values
of which give time instantaneously the configuration of the manipulator arm.

We place the Cartesian reference frame 080100 of the “world” coordinates
fixed to the base, as shown in Fig. 1.1, with the origin at joint 1. It will thus also
be called the inertial or, more frequently, base system. We also embed a
Cartesian reference frame 0;¢m:¢; in each link i=1,2. These are body
coordinates of the link concerned, called briefly link coordinates. We let the
origin 0; be at the joint i + 1, while the {; axis is parallel to the axis of joint i
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2 1 MECHANICAL MODELS
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(axis of rotation or translation). This means that 0, is placed at the end of link
1, that is, at joint 2.

The motion of a link is considered in terms of the motion of its link
coordinates 0,£;1,(; with respect to some reference frame. In general such
motion is determined by three changes of position along coordinates of this
frame (translation of 0;) and three changes of orientation (rotation of
0;,¢&;:,m:,(;), as well as the corresponding velocities. Obviously, the motion of
link 1 is referenced to the base frame 0£,7,{,. In our case link 1 rotates only
about the {, axis with the position and velocities of m, (¢, %01,C01) specified
by

&) =rycosB(t),  &oy(t) = —ry sinb(t) - 6(0),
Mo (8) =y sinB(t), g, (t) = ry cos O(d) - O(t), (1.1.1)
lo1(t) =0, los(®) =0,

where t is time, with ¢ > t,, which is an initial (reference) instant, ¢, € R.

The motion of any other link i > 1 may be investigated by referencing it
relative to the frame fixed at the previous link 0;_,&;_;7;_,{;_;. Such a
relative reference applied sequentially leads to indirect reference to the base
coordinates 0&,7,{,. Alternatively, we may reference the motion of each link i
directly to 0&yn0 8, -

In the case of our example, the translation of m, (&,,,n,,{;,) presently
referred to 04&onelo gives

Eo2(t) = r(t) cos 6(2),
No2(t) = r(t)sin (), (1.1.2)
Lo2(t) = 0;
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and the velocities
&0, (t) = F(t)cos B(t) — B(t)r(t) sin O(¢),
fio2(t) = F(t)sin O(t) + B(2)r(t) cos O(t), (1.1.3)
loa(0) =0,

as the direct-to-base reference approach.
Note that (1.1.3) may be written as

éoz _|cos@ —rsinf |fF :
[ﬁoz ~ [sin6 rcos@ || 6 (1.1.4)

cosf —rsinf
sin 6 rsin @

where

J(r,0) = [ (1.1.5)

is the Jacobian of the transformation between the variables

(rs 9) - (602 sMo2» COZ)'

More generally, the standard routine in manipulator kinematics (see Paul
[1]) is to use a transformation matrix A;, i = 1,2, describing the relative
translation and/or rotation between 0,&,4,{; and 0,_ &, n,_,{;_ . Then the
position and orientation of the link i in base coordinates are given by the
matrix product T; = A, - A, - -+ - A;. The matrix A4; transforms the position
vector 7;_; of the mass point m;_, into r; of m;:¥; = A;7;_,. The matrix may
include a rotation matrix (direction cosines) and/or translation matrix
(components of translations vector). Depending upon the kinematic method
employed, these vectors and matrices may be either three dimensional and
3 x 3, immediately generalizing (1.1.1), (1.1.2), or four dimensional called
homogeneous with F; = (a;,b;,c;) represented by the matrix [&#,(d;]",
a; = &;/d;, b; = n;/d;, c; = {;/d; and the transformation matrices 4 x 4.

In our example A, is a rotation matrix only, while A4, represents only
translations

cosf —sinf 0 O
sin@ cosf 0 O
A = 1.
! 0 0 1 of (1.1.6)
0 0 0 1
1 0 0 r
01 00
A, = 001 ol (1.1.7)
0 0 0 1
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Then the relation to the base coordinates is given by
cosf) —sinfl O rcosf
sinff cosf O rsinf
0 0 1 0
0 0 0 1

Note here that the general homogeneous transformation illustrates the case of
rotation first and then translation (see the fourth column of the 7, matrix). We
took the link coordinates positioned similarly to 0&,n,(, for illustrative
purposes. A more frequently used convention is to take {; along the axis of
rotation or translation. Readers interested in kinematics of manipulators
may look for details in Paul [1], Coiffet [1], Snyder [1], or Kooleshov and
Lakota [1].

The relative reference approach is also convenient for the fast numerical
simulation (see Hollerbach [1]) and thus for speeding up the on-line
calculations during the work of the machine, as well as for deriving the
inetostatic relations needed for computer aided modeling (see Stepanenko
and Vukobratovic [1]). In both these applications recursive kinematics is
used, i.e., calculations begin with a given path of the gripper. We shall return to
this topic in Sections 3.1, 4.6, and 5.5.

On the other hand the direct approach relates the mechanical network (see
Skowronski [2]) of links and appendages (gripper, vehicle) to other objects in
the world space 0&,7,(, on which the manipulator works, later called targets,
or which it must avoid, termed obstacles. Once the links and appendages are
referred to 0£y7,,, we consider their relation to the objects in this space or, if
convenient, simplify matters by taking the space of relative distances between
the elements of the network and the objects. Then the origin (zero distance) in
that space is discussed as either an attracting target or repelling obstacle, see
Sections 4.6 and 5.5.

Moreover representing the robot and its environment as a joint system in
0&o70Lo allows the use of the wealth of methods available in system dynamics,
providing an insight into the dynamic behavior of the robot, which is much
needed for synthesis, design, and optimization. Such an insight is very poor
or totally missing in the numerically based kinetostatic investigation (for a
review see Silver [1]).

In this section we simplify the network to the two links concerned, with the
last mass m, also representing the gripper, and m, covering the vehicle as well,
provided it is fixed at 0. These approximations fully suit our purpose of
control-dynamical studies, and have been justified within the so-called
“augmented body” approach (see Liegeois, Khalil, Dumas, and Renaud [1]
and Hooker and Margulies [1]).

We turn now to the environmental object (target, obstacle) which may be
represented by points in 0&y7,(, . In the case of a lumped mass representation,

Ty=A, - A, = (1.1.8)
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it will be a single mass point; in the case of a larger body, it will be several
geometric points specifying the boundary. Let us take a mass point mj,
determined by &3, 7103, (o3 as the target to be reached by the gripper, and a
body determined by the band (safety zone)

boa < &o < &os,» Noa < Mo < Nos, (o #0 (1.1.9)

enveloping an antitarget as a set to be avoided.

The objects are either at rest or moving. We assume here the first case,
leaving the second to more general study in Section 1.2. We have &,; = q,
flos = b, {o3 =0, {o4 = a4, Eo5 = as, Mloa = ba, Nos = bs, all constants.

Our gripper m, will now pursue m; (a, b,0) while m,, m, avoid the band
ay < &; < as, b, < ny; < bs, i = 1,2, with the kinematics described by (1.1.1),
(1.1.2), and (1.1.4). Observe however that the motion is constrained by the fact
that each joint is allowed only one DOF. Indeed, from (1.1.1), (1.1.2), and
(1.1.4), we see that the motion depends only on two independent variables 0(t),
r(t), and their derivatives 6(t) = w(t) and 7(t) varying with time t > t,. We thus
choose them as the Lagrangian joint coordinates q, = 0(t), q, = r(t) with
4, = o(t), 4, = F(t). Note that the relative referenced choice g, = r(t) — r;,
r, = const, does not change our case since all derivatives of r, vanish. It is
easily seen that the motion is completely determined by q, (), ¢,(t), 4,(t), 4,(2),
or by two vectors: the configuration vector g(t) = (q,(t), q,(t))" in the config-
uration space R? and the velocity vector g(t) = (4,(t),d,(t))T in the corre-
sponding tangent space of generalized velocities.

We thus arrive at the representation of motion in the phase space R?",n = 2,
by the vector X(t) = (q,(t), 4»(2), 4,(2), 4,(1))7, t = to, which will later be called
the state vector of the system, while R*" becomes the state space RN, N = 2n.

The reaching ability of the joints, in particular of the gripper m,, in both
configuration and phase spaces is limited. The gripper and the joint 1 can
maneuver in a bounded work space in 0&,n,(, restricted by the physical
limitations of its design, while the velocities and accelerations are bounded by
the bounds on the controlling forces and torques of actuators. The restrictions
by design will be most frequently given directly in terms of 6, r in the
configuration space. They produce a bounded set A, called the work region.
Together with the bounded set A; in the tangent space restricting the velocities,
these two sets generate the state work.region A=A, x A; = RV, expressed in
terms of specified stop limits on g{(t), g(¢). In our case A, will be bounded only
by the design limitation on g, = r, g; = 0 being arbitrary.

Recall that in 0£,1,{, the gripper attempted to reach the target m, (a, b, 0)
while both joints had been avoiding the obstacles. Because of the obstacles, in
order to do a job on a workpiece, say mj, it becomes important for the arm to
achieve such a configuration of all the joints (in our case two) such as to make
the reaching by the gripper possible. Since a vector g(t) in the configuration
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space represents the positions of all the joints, we may reach the above-
mentioned target configuration by conveniently reaching a desired stipulated
point g in R2, which thus may be called a configuration target. It may be easily
seen that it is different from m; in 0&,7,(, in that it refers to all the joint
variables involved in the system, not to the gripper only. With this in mind, we
still briefly call it a target.

Now the Cartesian target m; (a,b,0) and the Cartesian avoidance band
(1.1.6) must be transferred into the joint coordinates, obviously by inverting
(1.1.1), (1.1.2), and (1.1.4). Unfortunately, this is not a unique procedure even
in our very simple modular case and is obviously less so in general. Indeed the
inverses of (1.1.1), (1.1.2) give

g, = r(t) = {[&o2(8)]* + (102017},
q1 = 0(t) = arctan(ny,(t)/ o, (t)) = arctan(no,(t)/So1 (1))

which produces a sequence of values for 6(¢). The above gives the con-
figuration target I

q, = arctan(b/a),  q, = (a* + b*)'/? (1.1.11)

(1.1.10)

and the avoidance band as .</;

arctan(b,/a,) < q, < arctan(bs/as),

2 2y1/2 2 2y1/2 (1.1.12)
(az + b3)'* < q, < (a5 + b3)"'~.
In order to invert (1.1.4) we differentiate (1.1.10) obtaining
) ; ) : — 1
2r7 = 285,802 + 21027025 fsec? 0 = e 502 + ——To2-
o2 o2
The latter yields
—MNo2 5 1 5
= Eox + .
Eoar/E8;) 2 T Eoar/ER,) 1
Hence the inverse of (1.1.4) is
. . o2(0) ; 102(?)
= it foa(t) + 2o, 1
q> )= ) 02(f) r(0) flo2(t),
o . £os(0) (1.1.13)
. 2 —n 5
4, =0() = 2(2;) 502( ) + ozz(t) No2,

or

<r>:( Co2/T  Moa/T ><£02)
6 —No2/r? &oa/1? Moz
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with the inverted Jacobian matrix

_ Co2/T  Moa/T
J Y, 0) = <—1102/r2 éoz/rz)’ (1.1.14)

which is a key feature of the “inverse” kinematics and dynamics described later
in Chapter 3.

The relation (1.1.13) now serves to establish the corresponding target and
the possible avoidance band in the space of generalized velocities to
complement (1.1.11) and (1.1.12) to a target T and an avoidance set s/ in the
phase space. Indeed, if there were a task of attaining some velocities &, (t) = c,
and 7jo,(f) = d by the gripper while at I, in particular to stop there (¢ = 0
d = 0), by (1.1.13) we would aim at ¢, = 0, g, = 0, with the target

I:q, = arctan(b/a), g, =(a*+b*>"%,  §,=0, ¢,=0. (1.1.15)

Moreover, if one wished to avoid excessive speeds &y, = ¢, fig, = d,, i = 1,2
close to the obstacles, then by (1.1.13) one would have to avoid ¢ specified by
(1.1.12) and

A4Cy + b4d4
2@+ Y@y

(1.1.16)
—byc, a,d,
aj +b2 a4+ b¥’

4, =

when approach .o/, from below, or (1.1.16) with a,, b, replaced by as, bs when
approaching 7, from above.

It is now of interest how T and ./ relate to the work region A, which is
convenient if made simply connected. The target T (1.1.15) fits for a suitable
length r of the arm, that is, when v/a? + b2 < rpy,; P, provided by the
designer. The obstacle along g, may obviously be excluded from A, by suitable
adjustment of r.;,, Fmay, Without spoiling the connectedness. However the
angular obstacle on g, (1.1.12) has to be covered by A, and made avoidable by
means of the controlling torque rather than by excluswn The velocity
obstacles (1.1.16) can be excluded by adjusting the boundaries of A; in a
similar way.

The motion of our manipulator is generated by two controlling actuators or
drives, which may be electrical, pneumatic, hydraulic or mixed, depending on
the job to be done. These actuators produce torques or forces, while acting
upon the joints, rotary or prismatic, respectively, through some transmission
that includes clutches, brakes, etc. In our case we let the control variables u 1(0),
u,(t) represent the input from the two actuators producing a torque 0%(q,q,u,)
on joint 1 and a force Q5(g, g, u,) on joint 2, the functions 0%(-), 95(-) being

called input transmission forces.
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The actuator’s job is twofold; it must be passive to offset the gravity of links
and joints (their own weight as well as the payload) and active to perform a
specified assignment for the manipulator. It is often convenient to replace, at
least in part, the passive job by the static effort of spring forces acting on or
between the lumped masses. In our case we offset the gravity 9.81m; and
9.81(m, + m,) by setting up the spring force S = a, + aq, + bq (see Fig. 1.1)
with the free-play a, = —9.81m;r; and a hardening effect afterward.
Elementary mechanics gives the potential energy as

v'(q) = 9.81m,r,sing, — 9.81m,r,q, + 3aq? + +bqt + 9.81m,q, sinq,,
(1.1.17)
and the kinetic energy as
T(q,q) = $miridi + 3my(d3 + 4347)- (1.1.18)
We immediately calculate the Lagrangian L(7,q) = T(g,4) — *"(7). Then we
assume the damping force in the joints to be 4,|4,|4, and 4,4,, respectively,
with 4; = const > 0, i = 1,2 being the damping coefficients. With the input

transmission generally described by QF(g,q,u;), i = 1,2, the Lagrange equa-
tions of motion (see Section 1.3) immediately give

(myri + myq3)ds + 2myq2414; + 4114114 + 9.81(mry + myq;)cos g,
—9.81m,r, + aq, + bq} = QF, (1.1.19)
my4y — Myq,4i + A4, + 9.81m,sing, = QF.
Now since (m;r? + m,q3) > 0, m, > 0, we may let

9.81(m,ry + m,q,)

G,(q) = co
l(q) mlrf +m2q% Sql,
_ ] (1.1.20)
G,(7) = 9.81singq,
be gravity characteristics, while
_ —981myr, + aq, + bq3
¥,(7) = 121 ‘hz ‘11,
myri + myq;
., (1.1.21)
¥;(q) =0
are elastic (spring) characteristics of the system.
Then the sum
II(q) =¥(q) + G(g), i=1,2, (1.1.22)

will be called the characteristics of potential forces. In turn, the characteristics
of nonpotential forces (centrifugal, Coriolis, damping) will in our case reduce



