FOURIER SERIES
AND BOUNDARY
VALUE PROBLEMS

RUEL V. CHURCHILL



FOURIER
SERIES
AND
BOUNDARY
VALUE
PROBLEMS

RUEL V. CHURCHILL

NNNNNNNNNNNNNNNNN

SECOND EDITION



PREFACE

This ig an introductory treatment of Fourier series and their
applicationa to boundary value problems in partial differential
equations of engineering and physics. It is designed for students
who have completed the equivalent of one semester of advanced
calculus. The physical applications, explained in some detail,
are kept on a fairly elementary level. _

The first objective is to introduce the concept of orthogonal sets
of functions and representations of arbitrary functions in series
of the functions of such sets, The most prominent special cases,
the representation of functions by trigonometrie Fourier series,
are given special attention. Fourier integral representations and
expansions in series of Bessel functions and Legendre polynomisla
are algo treated.

The second objective is a clear presentation of the classical
method of golving boundary value problems with the aid of those
representations in series of orthogonsl functions. Some attention
is given to the verification of solutions and to uniqueness of solu-
tions, for the method cannot be presented properly without such

considerations. Other methods are treated in the author’s books
" “Operational Mathematics” and “Complex Variables and
Applications,” ' .

This edition is an extensive revision of the original 1941 edition
of the hook. The exposition has been revised throughout.
Bome additional material has been intreduced on differential
equations and boundary conditions, uniform convergence, com-
plex-valued functions, Fourier integrals, convergence of Legen-
dre’s series, uniqueness of solutions, and other topics. Some
rearrangement of topics was found desirable; for instance, partial
differential equations of physics are now treated in the first
chapter in order to simplify the introduction of other topics.

Additional attention is given to the mathematical analysis,
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vi PREFACE

Examples, problems, figures, and bibliography have beén
revised. . '

The chapters on Bessel functions and Legendre polynomials,
Chapters 8 and 9, are independent of each other. They can be
taken up in either order. Chapter 10, on uniqueness of solutions,
and Chapter 5, on further properties of Fourier series, as well as

.some sections of other chapters, can be omitted in order to
shorten the course.

In the development of the book through this edition the author
acknowledges the helpful comments and encouragement of many
teachers and students. Among his local colleagues, Professors
R. C. F. Bartels, C. L. Dolph, G. E. Hay, and E. D. Rainville
deserve special thanks.

RUEL V. CEURCHILL
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CHAPTER 1

PARTIAL DIFFERENTIAL EQUATIONS OF PHYSICS

1. Two Related Problems. We shall be concerned here with
two general types of problems. One type deals with the repre-
sentation of arbitrarily given funections by infinite series of func-
tions of a prescribed set. . The other consists of boundary value
problems in partial differential equations, with emphasis on
equations that are prominent in physics and engineering.

Representations by series are encountered in methods of solving
boundary value problems. The theories of those representations
can be presented independently. They have such atiractive
features as the extension of concepts of geometry, vector analysis,
and algebra into the field of mathematical analysis. Their
mathematical precision is also pleasing. But they gain in unity

.and interest when presented in connection with boundary value
problems. .

The get of funetions that make up the terms in the series repre-
sentation is determined by the boundary value problem. Repre-
sentations or expansions in Fourier series, certain types of series
of sine or cosine functions, are associated with the more common
boundary value problems, We shall give special attention to the
theory and spplication of Fourier series. But we shall also
congider extensions and generalizations of such series, including
Fourier integrals and series of Bessel functions and Legendre
polynomials.

A boundary value problem is correctly set if it has one and only
one solution. Physics! problems associated with partial differen-
tial equations often suggest boundary conditions under which a
Problem may be correctly set. In fact, it is sometimes helpful to
interpret a problem physically in order to judge whether the
boundary conditions may be adequate. This is a prominent
reason for associating such problems with their physical applica-
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2 FQURIER SBERIES AND BOUNDARY VALUE PROBLEMS {SEC. 2

tions, aside from the opportunity to display interesting and
trnportant contacts between mathemsatieal analysis and the
physical gciences. ’

The theory of pa.rinal differential equations gives results on the
existence of solutions of boundary value problems. Buié such
results are pecessarily limited and complicated by the great
variety of features: types of equations and conditions, and types
of domains. Instead of appealing to general theory in treating a
specific problem, we may actually find a solution and then prove
that only one solution is possible..

2. Linear Boundary Value Problems. Theory and applica-
tions of ordinary or partial differential equations in & function »
usually require that  satisfies not only the differential equation
throughout some domain of its indepsndent variable or variables
but slso some conditions on boundaries of that domain. The
equations that represent those boundary conditions may involve
valuea of derivatives of «, as well as u itself, at points on the
boundary. In addition, some conditions on the continuity of u
and its derivatives within the domain and at the boundaries are
required.

Such & set of requirements constitutes a boundary value problem
in the function 4. We apply that term whenever the differential
equation is accompanied by some boundary conditions even
though the condifions may not be adequate t6 ensure a unigque
golution of the problem.

The three equations

) w(z) ~ ule) = —1 | ©0<z<l),
W) =0, u(l) =0,

for example, constitute a boundary value problem in ordinary
differential equations. The domain of the independent variable
z ia the interval 0 < x < 1 whose boundaries consist of the two
points z = 0 and # = 1. 'The solution of this problem which,
‘together with each of its derivatives, is continuous everywhere is
found to be

(2) u(t) = 1 — (cosh 1)~! cosh z.

Frequently it is convenient to indicate partisl differentiation
by writing independent variables as subseripts. If, for instance,
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 is & function of thte independént varisbles x and y, we may write

us OF u.(z,y) for %-;—‘: %= for %3, Uz, for %.-
and so on. Also, we shall be free to use the symbols u.(zyy)
and e{Zey) to denote the values of the funetions 9u/dz and
d%u/dz*, respectively, on the line z = zy, and corresponding
gymbols for boundary values of other derivatives.
The problem consisting of the partial differential equation

(3) _ wa{z,y) + wlzy) = 0 (z > O;y >0)

- and the two boundary conditions
o) . w(0,y) = u.(0y) gy >0),
- w(z,0) = sinz + cos {(z > 0),

is an example of 4 boundary valie problem in partial differential
equations. The domain ig the first quadrant of the :ay plane.
The reader can verify that the function

(5) ul(z,y) = ¢*(sin = ¥ con z)

ie & solution of that problem. This function and its partial
derivatives are everywhere continuous in the two variables =,y
together and bounded in the domain z > 0, ¥ > 0.

A differential equation in a funetion 4, or a boundary condition
on u, is linear if it is an equation of the first degree in u and deriva-
tives of u. 'Thus the terms of the equation are either functions of
the independent variables alone, including constants, or such
functions multiplied by either u or one of the derivatives of u.

The differential equations and boundary conditions (1), (3),

.and {4) above are sll linear. The differential equation

(6) 2 + Tyt —~ eu, = f(y,2)
in u(z,y,s) is linear. Buj the eéquation
Uge 4= WU, = T

is nonlinear in u(r,y) because the term ww, is not of the first
degreo as an algebraic expression in the two variables 4 and wu,.

Let the letiers A to @ denote either constants or functions of
the independent variables z and y only. Then the general linear
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partial differential equation of second order in u(z,y) has the form
{0 Atsz -+ Busy + Ctiyy + Dua + By + Fu = @

A boundary value problem is linear if its differential equation
and all its boundary conditions are linear. Problem (1) and the
problem consisting of equations (3) and (4) are exaroples of linear
boundary value problems.

Methods of solution presented in this book do not apply to non-
linear boundary value problems. - -

A linear differential equation or boundary condition is homo-
geneous i each of ita terms, other than zero itself, is of the first

degree in the function % and its derivatives, _
*  Equation (7) is bomogeneous in a domein if and only if
@(z,y) = 0 throughout that domain. Equation (8) is nonhomo-
geneous if f(y,2) > 0. Equation (3) and the first of conditions {4)
are homogeneous. In our treatment of linear boundary value
problems, homogeneous equations will play a distinctive role.

8. The Vibrating String. A tightly stretched string, whose
position of equilibrium is some interval on the z axis, is vibrating
in the zy plane. Each point of the string, with cogrdinstes (z,0)
in the equilibrium position, has a transverse displacement y(x,f)
at time £. We assume that the displacements y are small relative
to the length of the string, that slopes are small, and that other
conditions are such that the movement of each point is essentially
in the diréction of the y axis.  Then at time ¢ the pomt has
. coordinates (z,y).

Let the tension P of the string be great enough that the atring
behaves as if it were perfeetly flexible; that is, at each point the
part of the string on the left of that point exerts the force of
magnitude P in the tangential direction upon the part on the
right ; the effect of bending moments at the point can be neglected.
The magnitude of the x component of the tensile force is denoted
by H (Fig. 1). Our final assumption is that H is congtant, that
is, that the variation of H with x and ¢ can be neglected.

. 'Those ideslizing assumptions are severe; but they are justified

in many applications. They are adequately satisfied, for
instance, by strings of musical instruments under ordinary con-
ditions of operation. Mathematically, the assumptions lead to
partial differential equation in y{z,f) which is linear.

Now let V{xz,t) denote the y component of the tensile force
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exerted by the left-hand portion of the string on the right-hand
portion at the point (z,). We take the positive sense of V as
that of the y axis. If ais the alope angle of the string at the point
(z,y) at time {, then —V/H = tan « = 3y/3x as indicated in
Fig. 1. Thus the y componenl V of the force exerted by the part of
the s&rmg on the lefi of a point (z,y) upon the part on the right, al
time t, i given by the formula

) Viz,t) = —Hy.(z,0) (H > 0).
This is the basic formula for deriving the equation of motion of
thegtring, It is also used in setting up certain types of boundary

conditions.

y

i
I
!
t
]
I

! I
- I Az |
0 (x,o) =
Fra. 1

Suppesé that all external forees such as the weight of the string
and resistance forces, which act on the string, other than forces
at the end points, can be neglected. Consider a segment of the
ptring not containing an end point, whose projection on the x axis
has length Ar. Since z components of displacementsa are
negligible, the mass of the segment is § Az, where the constant 3 is
the mass of the string per unit length, At time { the y compo-
nent of the force exerted by the atring on the segment at the left-
hand end {z.y) is ¥ (=,f), given by formula (1), The y component -
of the force exerted by the string on the other end of the segment
is -~ ¥ (z + Ax, t), where the negative sign signifies that the force
i8 exerted by the right-hand part upon the left-hand part at that
point. The acceleration of the end (z,y)} in the y direction is
yu(z,t). According to Newton’s second law of motion (mass
times acceleration equals force), then

@ 83yl = ~Hyed) + Hisa o+ a2, ),
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approximately, when Az iz amall. Hence

#alT -+ Ax, ) — yalz, t)
Ax

H .
yalz,) = 3 Jim llm =3 yﬂ( )
ab .ea.ch point where the partial derivatives exist.
Thus the functior y(z,f), representing the transverse displace-~
ments in a stretched string under the conditions stated above,
satisfies the wave equation

%y Iy H
(3) Eig=ﬂ’a'—x—§ (GE=*8->0)

at points where no external forces act on the string. The
constant @ has the physical dimensions of velocity.

4. Modifications of the Equation. End Conditions. When
external forces parallel to the y axis act along the string, let F
denote the force per unit length of string. Then a term ¥ Az
must be added to the right-hand member of equation (2), Sec. 3,
and the equation of motion is '

0y yulzt) = a?ye(z,t) + F5',

In particular, if the y axis is vertical with its positive sense
upward and the external force consists of the weight of the string,
then F Az = —& Ar ¢, where the constant g ig the acceleration of
gravity. Equation (1) then becomes the linear nonhomogeneous
equation

@ ya(2)t) = eyal(zd) — g

In equation (1), F may be & funection of z, ¢, ¥, or derivatives
of . Incase the external foree per unit length is a damping force
proportional to the velocity in the y direction, for example, F is
replaced by —By,, where the positive constant B is & coefficient
damping. Then the equation of motion is linear homogeneous:

(3) . yu(:t,t) = a‘y,,(s,i) —_ by:(z,t) (b = B‘“l).

If one end z = 0 of the string is kept fixed at the origin at all
timea ¢ = 0, the boundary condition at that end is clearly

4 ' y(0,5) = 0 tz 0).

But if that end is permitted to slide along the ¥ axis and if the end
is moved along that axis with a displacement f(¢), the boundary
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condition is the linear nonbomogeneous condition

(5) C y0) = f6) (¢t = 0).
When the left-hand end is looped around the y axis and a foree
g(®) in the y direction is applied to that end, g{f) is the limit of
the force V(z,t) described in Sec. 3 as ¢ tends to zero through
pogitive values. The beundary condition is then
(6) - —Hy. 0, = g® > 0).
The negative sign djsa.ppe'ars if x = 0 is the right-hand end
because g{?) is then the force exerted on the part of the string to
the left of that end.

6. Other Examples of Wave Egquations. We can présent
further functions in physics and engineering which satisfy wave

é—»y(x,t)
\

0 x Ax . x
' Fie. 2

equations and still limit our attention to fairly simple physical
phenomens.

Longitudinal Vibrations of Bars. Let the coordinate z denote
the distance from one end of an elastic bar in the shape of a
cylinder or prism to other cross sections when the bar is unstrained.
Displacements of the ends or initial displacements or velocities
of the bar, all directed lengthwise along the bar and uniform over
each cross section involved, cause the sections of the bar to move
in the direction of the z axis. At time t the longitudinal dis-
placement of the section labeled z is denoted by y(z,?). Thus the
origin of the displacement y of that section is fixed outside the
bar, in the plane of the original reference position of that
section (Fig. 2).

At the same time a neighboring seetion labeled z 4 Az, to the
right of section z, has a displacement y(z + Az, i}; thus the
element of the bar with natural length Az is stretched by the
amount y(z + Az,2) — y(z,f). Assuming that this extension or
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compresgion of the element satisfies Hooke's law, the force
exerted upon the element over ita left-hand end is, except for the
effect of the inertia of the moving element,

Ap¥e Azl -yl
Ax :

where A is the area of A cross section and E is the modulus of
elasticity of the material in tension and compresgion, When
Az tends to zero, then it follows that the total longitudinal foree
»{z,f) exerted on the section z by the part of the bar on the left
.of that section is given by the basic formula

(1) . plz,d) = — AEy,(a:,t)..

Let 4 denote the mase of the material per unit volume.  When
we apply Newton’s second law to the motion of an element of the
bar of length Ar,

@) A Azyu(nt) = —AEy.(z)) + AEy.(x + 4z, 1),

where the last term represents the force on the element at the end
r + Az, we find, after dividing by 84 Ax and letting Az tend to
zero, that

(3) yulz,t) = aty.(z,t) ~ (a* = E& ).

Thus the longitudinal displacements y(z,!) in an elastic bar
satisfy the wave equation (3) when no external longitudinal forces
act on the bar other than at the ends. We have assumed only
that displacements are small enough that Hooke’s law applies and
that sections remain plane after being displaced. The elastic
bar here may be replaced by a column of air; then equation (3)
has applications in the theory of sound.

The boundary condition y(0,f) = 0 signifiea that the end z = 0
of the bar is held fixed. If instead the end z = 0 is free when
t > 0§, then no force acts across that end that is, p{0,8) = 0 or,
in view of formula (1),

4) y=(0,) = 0 S @>0.
Transverse Vibrations of Membranes. Let z(z,y,!) denote small
displacements in the z direction, at time #, of points (2,5,0) of &

flexible membrane stretched tightly over a frame in the zy plane.
The tensile stress P, the tension per unit length across any line on
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- the membrane, is Iarge, and the magnitude H of it component
- parallel fo the oy plane ia assumed to be constant. Then the
internal force in the 2 direction at a section z = Zs, Per unit
length of that line, is — Hz,(xe,y,1), _correapondmg to the force ¥
(Sec. 3) in the vibrating ptring. 'The force in the z direction at &
section ¥ = yo, per unit length, is — Hz,(z,y.,0). :

Congider ap element of the membrane whose prejection on
the zy plane is 2 rectangle with opposite vertices {z,5,0) and
(x + Az, y + Ay, 0). When Newton’'s second law is applied to
. the motion of that element in the 2 direction, we find thai
#(z,3,0) satisfies the two-dimensional wave equation

(5) Zw = G*2ea + 2y} {a* = H3™Y).

Here § is the mass of the membrane per unit area. Details of the
derivation are left to the problems. '

1f an external transverse force F(z,y,f) per unit area acts over
the membrane, the equation of motion takes the form

® 2 = 04Zas + 2y) + F&L

PROBLEMS

1. Give details in the derivation of equation (1), Sec. 4, for the forced
vibrations of a stretched string.

2. A tightly stretched string with ita ends fixed at the points (0,0) and
(2¢,0) hangs at rest under ita own weight, The y axis points vertically
upward., State why the static displacements y(z) of peints of the stnng

“satisfy the boundary value problem

a%y''(x) —g=0 (0 <z < 2),
¥(0) = y(2) = 0.

Hence show that the etring hangs in the parzholic are
G-t =2(y 1 £5) 0525 2).

Show that the depth of the vertex of the ar¢ varies dn'ectly with & and ¢*
and inversely with H.

8. Use formula (1), Sec. 3, for the vertieal force ¥V and the formula for
y in Problem 2 to show that the vertical force exerted on that string by
either support is gbe, half the weight of the string,

4. A strand of wire 1 fi long, stretched between the origin and the
point (1,0) with tension H = 10 Ib, weighs 0.032 b (g = 0.032, ¢ =
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32 ft/eec?). At the instant ¢ = O the strand lies along the z axig, but it
has & velocity 1 ft/see in the direction of the y axis, perhapa because the
gupporta were in motion and were broughf to rest at that instant. If no
external forces act along the wire, show why the displacements y(z,1)
ghould satisfy this boundary value problem:

yulzt) = 104,.(x,0) O<e<Li>0),
y(0.0 = y(1,f) = 0, y(z,0) =0, y(0) =1

B. The physical dimensions of the force H, the tenaion in the string,
are thoge of mass times acceleration, MLT-3, where M denotes inass,
Llength, and 7T time. Bince e® = H&™, show that 4 has the dimensions
of velocity LT,

8. The end 2 = 0 of a cylindrieal elastic bar is kept fixed, and a
congtant compressive force of magritude Fy units per unit area jis
exerted at all times £ > O over the end 2 = ¢. If the bar is initially
unstrained and at rest and if no external forces act along the bar, verify
that the function y(x,) representing the longitudinal displacements of
cross sections should satisfy this boundary value problem:

Yulz,f) = a%yu.(z,t) (0 <z <gt>0;at = E§)
(0,0 = 0, By o) = —F, #{2,0) = yu(z,0) = 0,

7. The left-hand end z = 0 of an elastic bar is elaatically supported in
such a way that the longitudinal force per unit ares exerted on the bar
at that end is proporticnal to the displacement of the end, but opposite
in gign. Show that the end condition there hag the form

Ey0,8) = Eg(0,8) (K > 0).

8. Derive equation (8), Sec. 5. Also note that the staiic transverss
displacemenis 2(z,y) of a membrane, over which a transverse foree
F{z,y) per unit area acts, satisfy Poisson’s equation

Zax+ 24y + k= O (k= FH),

6. Conduction of Heat. Thermal energy is transferred from
warmer to cooler regions interior to a solid body by conduetion.
It is convenient to refer to that transfer as the flow of heat, as if
heat were a fluid or gas which diffuses through the body from
regions of high concentration into regions of low concentration of
that fluid.

Let Py denote a pomf. (Zo,40,20) interior to the body and S a
plane or smooth curved surface through P,. At a time { the
Aluz B(2o,y0,20,l0) of heat across S at Py, is the quantity of heat per
unit area, per unit time, that is being conducted across S at that



