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PREFACE

This textbook is intended for use in an advanced undergraduate
course in optics. The student is assumed to have completed a
thorough course in elementary physics and to be familiar with
the methods of the calculus. We have presented the material
in such a way, however, that the book may be used in classes in
which some students do not have the above mathematical
preparation. Thus wherever possible the mathematical deriva-
tions are supplemented by simple graphical or vector treatments
of the problem. The applications of calculus have been pur-
posely made very brief, but are always included for the benefit
of those students with a mathematical turn of mind. The main
emphasis is placed on the physical explanation of the various
phenomena, which we believe is most successfully accomplished
in the present subject by the use of graphical methods. For
this reason a large number of illustrations have been prepared
with considerable care to have them as exact as possible.

We have deliberately restricted the subject matter to rather
narrow limits. Thus, on the one hand, we have included no
geometrical optics. The knowledge of this subject gained in an
elementary physics course is ample for an understanding of the
material of this book. On the other hand, no systematic dis-
cussion of the quantum theory and its applications to spectra
and atomic structure has been given, even though this is an essen-
tial part of the subject of physical optics as the term is generally
understood. It would have been impossible to include an
adequate account of this field without a considerable increase
in the size of the book. We have therefore limited ourselves
strictly to the so-called classical physical optics or wave opties.
This has been necessary in order that there should be room for a
sufficiently detailed consideration of our subject.

But there is a more fundamental reason for this limitation than
the mere exigencies of space. The complementary character of
the wave and quantum aspects of light, which is an essential
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vi PREFACE

part of the modern theory, reveals these as two equally impor-
tant, but quite distinct, fields of study. In covering only the one
field, the book achieves a unity which would be lost by the
inclusion of a necessarily brief account of the other field. The
usual procedure in an introductory presentation of light has been
to develop the wave theory first, and afterward to describe some
of the quantum phenomena requiring the particle theory. The
dilemma in which we are left concerning the true nature of light is
then emphasized in such a way as to leave the impression that ulti-
mately one or the other of these theories will prove to be correct.
It seems to us that the time has come to adopt the point of view
emphasized by the quantum mechanics, namely, that the wave
and particle properties of light are merely two different aspects
of the same thing, and that one will probably never be more
important than the other. These two aspects are to be regarded
as complementary rather than as antagonistic. Although the
acceptance of this point of view requires a fundamental change
in our ideas as to what constitutes an ‘“‘explanation’ of a phe-
nomenon, the thoughtful student should certainly be given the
benefit of this newer outlook.

The dual character of the present theory of light and matter
leads to a logical way of dividing the subject matter into two
parts. On the one hand classical mechanics, the mechanics of
particles, corresponds to the quantum picture of light and to
geometrical optics. On the other hand the wave mechanics
corresponds to wave optics. In confining ourselves to the latter
field, we are covering the subject of ‘‘physical optics” in the
sense of classical physics only. In our opinion the quantum
aspects of light, which are apparently so sharply divided from the
wave aspects, are best presented in a separate course. If it is
desired to include them in the same course, reference should be
made to other books in which a fairly complete treatment of the
quantum theory is given. To be sure, it was not necessary or
desirable to omit all mention of the quantum aspects in the
present book. In the later chapters, which deal with the inter-
action between light and matter, we have been careful to point
out the shortcomings of the wave picture, and the necessity of
turning to the quantum theory for a complete explanation.

The most beautiful and striking experiments in physics are to
be found in the field of physical optics. Hence it is very desir-
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able that as many as possible of these be shown to the class or
performed by the students themselves. Descriptions of many
demonstration experiments are given throughout the text; these
are set off from the text itself by horizontal lines. The laboratory
work accompanying the course now given at the University of
California is desecribed in ‘“Laboratory Experiments in Physical
Optics,” by R. S. Minor and H. E. White. -

In writing this text we have had free access to the lecture notes
used by Professor R. T. Birge in his advanced course on physical
optics, and from these we have taken some of the explanations
and drawings used in the more involved phases of the subject.
We are also deeply indebted to Professor Birge for reading the
entire manuseript and for making numerous valuable suggestions
in regard to it. We wish to express our sincere thanks to
Professor R. S. Minor for the ruling of the various special diffrac-
tion gratings used by us in obtaining the photographs in Figs.
6A, 6E, 7A and 7F.

Francis A. JENKINS.
Harvey E. WHITE.

BeErRkELEY, CALIF.,
August, 1937.
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FUNDAMENTALS OF
PHYSICAL OPTICS

CHAPTER 1

LIGHT AS A WAVE MOTION

A large class of optical phenomena can be explained by assum-
ing that light consists of waves. Many of these phenomena are
not commonly observed in everyday life, but appear, for example,
when we make a detailed examination of the effects of passing
light through narrow openings or reflecting it from ruled surfaces.
Any case of the interaction of two or more light beams with each
other can be treated quantitatively by wave theory. Another
important class of phenomena requires for its complete explana-
tion the assumption that light consists of small bundles of energy
called photons, which are essentially particles of light. In this
class, the phenomena always involve the interaction of light with
matter. An example is the liberation of electrons from a metal
surface by light, called the photoelectric effect. The same two
classes are known to exist for material particles. An electron
or an atom behaves in some ways as though it were a group of
waves. In this book we shall be concerned with the first of the
above classes, .c., that which can be explained in terms of waves.
Our conclusions will apply to the waves of material particles as
well as to light waves. Hence we begin with the investigation
of wave motion in general, indicating as we proceed how the
various characteristics of light depend on those of the waves of
which we assume it to consist. ’

1.1. Periodic Motion. Since the passage of a train of waves
through a medium sets each particle into periodic motion, we
shall first find how to give a quantitative description of this kind
of motion. A periodic motion is one which repeats itself exactly
in successive equal intervals of time. At the end of each interval,

1



2 LIGHT AS A WAVE MOTION [CrAP. 1

the particle finds itself with the same position and velocity, and
the time between such occurrences is called the period. The
simplest type of periodic motion along a straight line is one in
which the displacement y from a fixed center is given by the
equation

y = rsin (of + a), (1a)

where ¢ is the time and 7, w and « are constants. This is the
motion of the projection, N (Fig. 14) on the y axis of a point P
moving with uniform speed in a circle

of radius r. If P has the position P,
when we start counting time, (¢ = 0),
and revolves counterclockwise with
an angular velocity of wrad/sec, the

~ Dprojection N will move up and down
the y axis with a displacement y
(=ON) given by Eq. la. The max-
imum value of the displacement is ,
which is called the amplitude of the
Fia. 14.~Showing how simple motion. The whole angle (wf + @)
s:;itzgicb;f’ c’tt}’;znpf;?:cthfn "on a determines the position of N at any
diameter of a poigt P tl}l:gvi?rg instant,land }:s ca}llled the ’I?lzlase antgle,
Wit ug v epest 2 " or simply the phase. e position
i e il N, at l:;e)l’"o time is specified by the
angle «, which is the initial value of the phase, or the phase con-
stant. The period T is the time for a complete revolution of P.
This requires a time 2r/w sec, since 2r is the angle swept out in
a complete revolution at the rate of w rad/sec. The period is
also the time for one complete to-and-fro vibration of N along the
straight line, and after the time 7' has elapsed the point N finds
itself in the same position and with the same velocity (direction
included) as it had at the beginning of this time. The reciprocal
of the period is the frequency, v = 1/T vibrations per second,
because the number of vibrations performed in a time of 1 sec.
will be this time divided by the time T required for one vibration.
The velocity of the point N varies between zero at its extreme
end positions, when P crosses the y axis, and a maximum at t.he
center where P crosses the z axis. An equation for the velocity
is obtained by differentiating Eq. 1la. At any instant it is given

by

»p/-——q

A\ Mo




Sec. 1.1] PERIODIC MOTION 3
U= Z—?t/ = rw cos (wt + a), (1b)

so that the maximum velocity is 7w or 2rr/T. The acceleration

a is zero at the center and a maximum at the extremes, since by
differentiation of Eq. 1b,

as—= déz = —rw?sin (wf + a) (1¢)

= —wy.

In the last form, the equation tells us that the acceleration is
proportional to the displacement y, since we have assumed w to
be constant. The minus sign indicates that the displacement y
is always opposite in direction to the acceleration. Referring
to Fig. 14, when N is above O, the acceleration is downward, and
when N is below 0, it is upward. According to Newton’s second
law, that force equals mass times acceleration, Eq. 1¢ means that
the motion of a mass point will be given by Eq. la if it is acted
on by a force which is proportional to the displacement and in
the opposite direction. This type of motion is frequently
termed simple harmonic motion or simple periodic motion and is
physically realized in the vibrations of an elastic medium where
the displacements are small and hence the forces are governed
by Hooke’s law.

Although simple periodic motion is evidently a very specialized
type of periodic motion, it is of great importance, not only
because it is frequently met with in actual waves, but also
because as we shall see any complex type of periodic motion can
be represented as the sum of two or more such simple motions
with suitable amplitudes, periods, and phase constants (Sec. 2.5).
If the more complex motion is in a straight line, the component
simple periodic motions from which it is made up will lie also
in this line, whereas if it is confined to a plane rather than a
line, we may regard it as made up of two motions (usually both
complex) along two axes in this plane at right angles to each
other. For example, a motion in an elliptical orbit with constant
speed may be regarded as made up of two linear motions, one
along the major axis and one along the minor axis of the ellipse,
neither being simple periodic. If the particle is attracted to the
center of the ellipse with a force proportional to the distance
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between the particle and the center, the speed in the ellipse will
not be constant, but the projection along either of the axes of
the ellipse or, more generally, along any other straight line
through the center, will be a simple periodic motion.

Linear, circular, or elliptical vibrations are the types most’
frequently dealt with in the study of light waves. The vibrating
source, which is necessary for the emission of any kind of waves,
may for certain cases of the emission of light be thought of as
an electron revolving about the nucleus of an atom. For a
large orbit, the force exerted by the rest of the atom on the
electron in question will vary approximately as the inverse

Fig. 1B.—Schematic diagram of a sodium atom with its single orbital electron.

square of the distance (Coulomb’s law), and the orbit will be
nearly an ellipse with the nucleus of the atom at one focus. The
vibrations in the light emitted in a direction perpendicular to
the plane of the orbit will then have an elliptical form correspond-
ing to that of the electron orbit, while in the light emitted in the
plane of the orbit they will have a linear form, corresponding to
the motion seen when the ellipse is viewed edge-on. Figure 1B
shows the orbit of an electron in an atom such as sodium.

1.2. Wave Motion. Waves of the type with which we are
most familiar, 7.e., waves on the surface of water, are of con-
siderable complexity. However, they may serve to illustrate an
important feature present in any wave motion. If the waves are
traveling in the x direction and the y direction is vertical, an
instantaneous picture of the contour of the waves in the z, y plane
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is given in Fig. 1C by the continuous curve. Let this curve be
represented by an equation y = f(z). If the wave contour is to
move toward 4z with a constant velocity », we must introduce
the time ¢ in such a way that as ¢ increases a given ordinate, such
as y1, will, after a time At has elapsed, be found at y," farther to
the right by an amount Az = vAf. This is accomplished by
writing the equation y = f(z — vt), since we have, at the two
times t and ¢ + At,

Y1 = f(z — ot)
yi' = fi{(z + Az) — o(t + Ab)}.

If now we substitute Az = vAt, we find that y./ = y;, and the
above requirement is realized. The wave is in the position of

ks s
TR 20N X
0! = e
%—” \‘)Z_—’/ e
“yp—— X ——t—0%x —}

Fig. 1C.—Illustrating the propagation of water waves.

the broken curve at the instant ¢t + Af. The general equation
for any transverse wave motion in a plane is

y = fl ). (1d)

The plus sign is to be used if the wave is to travel to the left, z.e.,
in the — direction.

The reader should not infer from the foregoing discussion that
the particles of water are transferred to the right along with the
wave. On the contrary, the only thing that moves along con-
tinuously is the contour, while each particle merely oscillates
about its position of equilibrium. For water waves the motion
of each particle is circular or elliptical in the 2, y plane. In this
case the ordinate y is merely the y component of the displacement
of the particle from its equilibrium position, since the motion is
not a transverse one confined to the y direction. Hence we next
consider the simplest type of waves, where this complication
does not arise.

1.3. Simple Periodic Waves. Suppose that the wave contour

y = f(x) is given by



