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“Probabilistic Theory of Struetural Dynamics” is
PREFACE the outgrowth of lecture notes for a graguate course
entitled Stochastic Structural Dynamies that I have taught at the Uni-
versity of Illinois since 1961. Hence, one of the purposes of this book is
to serve as a textbook for graduate students in structural engineering.
As a structural engineering textbook in random vibrations—as the general
field is now more widely known—it emphasizes analyses of the responses
of practical structures, such as beams, plates, and their combinations, to
random excitations of known probability descriptions or known statistical
properties. The number of examples introduced herein make this book
also suitable as a reference for research vorkers.

Briefly, the organization is as follows: Chapter 1 is an explanation of
the scope of the probabilistic theory of structural dynamics. Chapters 2
through 4 present the elements of probability theory necessary to the
subsequent structural analyses. Chapters 5 through 8 consider in turn
the random vibration of single-degree-of-freedom, multiple-degrees-of-
freedom, continuous, and nonlinear structures. Chapter 9 discusses
structural reliability and related topiecs. A knowledge of calculus, dif-
. ferential equations, matrices, strength of materials, and mechanical
vibrations is the prerequisite for the complete use of this book.

It is a pleasure to acknowledge the help I received during the prepara-
tion of the manuseript. Among my colleagues at the Aeronautical and
Astronautical Engineering Department of the University of Illinois, I
am indebted to Prof. H. 8. Stillwell, head of the department, for giving
me warm and constant encouragement and to Prof. H. H. Hilton, who
convinced me of the need for a course in stochastic structural dynamies at
the University of Illinois. I am grateful for the invaluable and com-
prehensive suggestions and criticisms of Prof. S. H. Crandall of the
Massachusetts Institute of Technology, who reviewed the manuscript.
Among my students, my special thanks are due B. K. Donaldson, who
painstakingly checked over the entire manuscript and with whom I have
had many stimulating discussions, and T. J. MeDaniel, who ably
assisted in a number of computations. T also wish to thank Miss D: rothy
Nugent and her staff for their unfailing assistance in putting the ranu-
seript in proper order, and especially Mrs. R. E. Richardson, who typed
the major part of the manuseript.

Y. K. LIN
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1 INTRODUCTION  The realm of structural dynamics has
been considerably enlarged since the

introduction of probabilistic methods. Previously, the structural engi-
neer would always cope with design needs by use of a deterministic
analysis. In such'an analysis, he would assume a complete knowledge
of the dynamic properties and the initial state of a structure and the
exact time history of its excitation. Consider, for-example, the simplest
situation in which a structure is idealized as a spring-mass-damper system
excited by an external force acting on the mass, as shown in Fig. 1.1. "If
at time ¢ = 0, the displacement and velocity of the mass are, respectively,

:c(O) =.%0b Z(O) = Vo (1-1)

then the>genera.l expression for the displacement z(f) may be written as
follows: !

z(t) = g(:l:o, Vo, ;n; k) ¢, t) + /:f(‘r)h(f’l, k: ¢ L T) dr | (1'2)

If it is assumed that the value of ‘every element on the right-hand side of
Eq. (1-2) is precisely known, then the motion of the mass x(f) ean'be
computed exactly. In a probabilistic analysis we admit uncertainty of"
knowledge of one or several elements on the right-hand side of Eq, (1-2).
For the sake of discussion, let it be uncertainty about the spring rate.
We shall call an uncertain quantity random. If we pick and carefully
calibrate one particular spring, we cannot help but find that it has a
definite exténsion-contraction rate. Therefore, as far as one particular
spring is concerned, the probabilistic viewpoint is not appropriate, or at
most it is only trivial.. Suppose, however, that we are interested in any
such spring manufactured from a certain process. Since not all springs

corC

mor M

Fig. 1.1 Spring-mass-damper system. |
‘ . Small letters denote deterministic quan- -

() or X () tities; capital letters denote random
f(t)or F(z)y . quantities.
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so manufactured are identica'l& before one samplé is picked from a batch
and tested it is nof possible to foretell the exact spring rate. From this
example we see that the adjective random implies a collection of samples
none of which has been separated from the others, and that once an
individual sample has been taken from the collection, it is deterministic.
Similarly, when we say that the forcing function is random, we mean
that the analysis is for a collection of exciting forces, each one of which is
generally different, from the others, but any one of which ¢an be encount-
ered in the actual service of the structure. . Obviously, when one or more
of the elements of the right-hand side of Eq. (1-2) are random, the dis-
placement must also be random. It is possible, however, to deduce the
random nature of the.displacement from the random nature of the spring
rate, the excitation, ete.

Since no material is perfectly homogeneous, no beam is perfectly
uniform, and no rivet perfectly fits a hole, ete., it is clear that the proba-’
bilistic viewpoint is more realistic, although in those cases where the
uncertainties involyed are small and are not the major issue, the simpler
deterministic approach may well be satisfactory. For example, by
adequate specification and supervision, the fabrication of a structure
may be controlled so that the uncertainty about the dynamic properties
of the structure may be overlooked. The uncertainty about the excita-
tion is generally greater, although sometimes a wise choice of a representa-
tive load or the choice of the most severe load can be made and the conse-
quent deterministic analysis may lead to a useful design although perhaps
not to the optimum design. Nevertheless, the primary ineentive for the
adaptation of probabilistic methods in struetural dynamiecs analyses has
been random excitations. In aerospace engineering applications, jet or
rocket engine noise and gusts are two representative sources of excitations
which should be treated by probabilistic methods. The efflux of a jet
or rocket engine is a turbulent flow. It is known that turbulence is a
phenomenon of flow instability and that there is a complicated energy
exchange taking place which has not been fully understood. A small
portion of the energy is converted into acoustic pressure, and this excites
the nearby structural component of the flight vehicle. The undesirable
consequences of this type of excitation are the fatigue failure of the
nearby structure, now generally known as acoustic fatigue, and the
malfunction of electronie equipment mounted on the structure, When
an airplane flies into a gusty region, the irregularly fluetuating portion’
of the total lift can produce hjgher stresses in the wing structure than
those resulting from the steady portion of the lift. For certain wing
configurations, it has been found that such fluctuating stresses may
become the major consideration in the structural design. If records
were taken of jet noise pressure at a given location on an airplane fuse-
lage, we should find that they are very erratic and that one record differs
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from another, The same unpredictability and lack of resemblance to

each other are also characteristics of the records of gust velocity. Fig-

ure 1.2 depicts some such records placed side by side. It is easy to see

that this type of physical phenomenon must be regarded as being random.

Examples of excitations which are essentially random and which

act upon other than aerospace structures are plentiful. Earthquake,

blast, and wind loads acting on architectural structures fall into this

general category. The excitation experienced by a shipillhull in a confused

sea is similar to that of an airplane in a gusty atmosphere. Nevertheless,

it has been primarily the applications in aerospace engineering which have

“speeded the development of the probabilistic techniques in the area of
structural dynamies. It is worth mentioning that these techniques are

being accépted more and more by the government purchasing and

certifying agencies as being more suitablé for the analysis of the structural

integrity of a product. It may not be too long before probabilistic

design requirements for earthquake, blast, and wind loads will be incor-

porated in most building codes.

Fig. 1.2 Typical records of a random phenomenon,
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Although' structural applications have provided the immediate
incentive for developing the probabilistic theory of structural dynamics
on a broad base, it is well. to mention that structural engineers have
inherited a considerable amount of knowledge from the early work of
physicists on the subject of Brownian motion. The first paper treating
Brownian motion as a random process was published by Einstein in
1905. It is interesting to note that Einstein’s problem may be con-
sidered as a special case of the spring-mass-damper system with both the
spring rate and the mass of the system negligibly small. Later, Ein-
stein’s work .was extended by many others, notably Ornstein (1917),
Uhlenbeck and Ornstein (1930), Van Lear and Uhlenbeck (1931), and
Wang and Uhlenbeck (1945). However, from the standpoint of Brown-
ian motion, ene is generally more interested in the behavior of closed
systems, closed in the sense that either the simple mass particle or'the
complicated continuum, say a beam, is surrounded by a fluid medium
~ which is in a state of so-called statistical equilibrium. The main objec-
tive is to study how the Brownian motion of the mass particle or the
beam tends to statistical equilibrium. Since, for such cases, the excita-~
tion and the dissipation forces are both provided by the fluid medium,
~ the two types of force are related. On the other hand, structural

engineers are interested in excitations and dissipations which are essen-
tially independent. Structural engineers also have benefited from the
work of electrical engineers, in particular from those in the fields of
infcrmation theory and control theory. These groups have made
extensive use of probability theory since the early 1930s and have devel-
oped techniques useful to structural engineers. Also notable is the
rich literature on the theory of turbulence. It was in the development of
this theory that the important concept of correlation in random phenom-
era was evolved Fmally, of course, we must not forget the contribution
of the mathematicians who furthered the development of the.common
tool, probability theory, and put it on a rigorous foundation. .
In spite of the healthy cross-fertilizations between different disci-
plines, certain features and difficulties are unique in some structural
dynamics problems. A unified approach is, therefore, warranted to dis-
cuss such problems. In the chapters Whlch follow an attempt has
. been made to accomplish this objective. Roughly one-thlrd,‘ of the vol-
ume 1s devoted t. famuiarizing the reader with certain aspects of prob-
ability theory, and two-thirds is devoted to applications. The treatment
of probability theory is limited to wuat is needed for our purposes, but
it adheres to the basic viewpoint of the modern textbooks on this theory
so that the reader can casily refer to such books for additional back-
grcund.  In the applications portion of this volume, the exposition is
divided aecording to tradivion into single-degree-of-freedom linear sys-
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tems, multiple-degrees-of-freedom linear systems, continuous linear sys-
tems, and nonlinear systems. In all cases the dynamic characteristics
of a system are assumed to be deterministic, and the excitation is agsumed

. to be random. The objective is to compute the probability law which
governs the behavior of the random response of the system or, in various
orders of completeness, statistical properties possessed by the response.
However, from an engineering standpoint the final goal is the ability to
make statements regarding the reliability of a structure to withstand
random excitations. Therefore, the concludmg chapter is devoted to a
discussion of structural failure.

Since this book deals solely with the methods of analysis, the design
aspects of structures are not considered in this volume. An analysis is
-usually based on a mathematical model which is an idealization of the real
situation. For example, we often use the deseriptions uniform cross sec-
tions, homogeneous material, sinusoidal excitations, ete., for deterministic
models. Here, we shall describe probabilistic models by probability laws
or by statistical properties. It is clear that ideal models, either determin-
istic or probabilistic, never actually exist. To justify the suitability
of a model in representing a real situation we must resort to measure-
ments. Since measured results of a random phenomenon are erratic and
dissimilar to one another, the justification of a probabilistic model is not a
simple matter; it belongs to the realm called statistical inference. The
following diagram shows that a probabilistic model and a physical random
phenomenon would be unrelated if not linked by measurements and

Physical Sl TR
¥ Statistical Probabilistic
Random Measurement,
Inference Model
Phenomena

statistical inference. Unfortunately, a proper exposition of the theo-
retical background and techniques of statistical inference for structural
dynamic problems would double the size of this book.}

The procedures of taking measurements and of data processing are
not: covered since the operating information can be found in the brochures
of most commereial devices; but the optimum use of such devices requires,

.gain, an understanding of the principles of statistical inference. In
short, the scope of the present book is confined to the analysis of the
probabilistic models of structural dynamics problems. T —

1 The following references are suggested for readers who are interested in this aspect.
R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra from the
Point. of View of Communications Engineering, Bell System Tech. J., 87:185-282,
485-569 ( 1958) ; reprinted by Dover, New York, 1959. J. 8. Bendat and A G. Piersol,
‘Meassuréement and Analysis of Random Data,” Wiley, New York, 1966.
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ASPECTS OF Itisnot possible nor necessary to give a thorough
exposition here of modern probability theory.

PROBABIL!TY Chapters 2 tkrough 4 will sketch, however, cer-

THEORY tain aspects of this theory required for our study
of the probabilistic theory of structural dynam-

ics, for the sake of being self-contained as well as for building a common

language for later discussion.

2.1 / SAMPLE SPACE, EVENTS, AND SIGMA ALGEBRA

We shall call a single observation of a random phenomenon a frial. The
outcome of a trial of a random phenomenon is, of course, unknown in
advance. However, we can always identify the seti whose elements
consist of all the possible outcomes of a trial. This set is called the sample
space of the random phenomenon. For example, the sample space of
tossing a coin is the set {H, T'}, that of throwing a die is the set {1, 2, 3, 4,
5, 6}, and that of measuring the extension-contraction rate of a spring
from a batch of springs is the set of, say, all positive real numbers, i.e.,
the open interval (0, ). Every element in a sample space representing
an outcome is called a sample point. ‘'We shall denote a sample space by
Q, a sample point by w. :

We can distinguish three types of sample spaces. A finite sample
space contains a finite number of sample points, such as {H, T} and
{1,2,3,4,5,6}. A countably infinite sample space contains a countably
infinite number of sample points, such as the set of all integers, denoted
by {n: n = integer}. Finally, an uncountable sample space contains
uncountably many sample points such as the intervals [0, =) and [a, b].

Next, we introduce the concept of an event. Suppose that the out-
come of a trial of throwing a die is 4. We may say that several events
have occurred: (a) number 4, (b) an even number, (¢) a number greater
than 2, (d) a number smaller than 5, (¢) a nymber equal to or smaller
than 6, etc. Note that any of the events (b) through (¢) may also occur
when the outcome is not 4, Since the sample space contains all the out-
comes, every event is a subset of the sample space. Event (a), contain-
ing only a single sample point, is ¢alled an elementary event; and events
(b) through (e), each containing more than one sample point, are called
compound events. An event is called a certain event when it contains all
the elements in the sample space. Thus, event (e) is a certain event.
Opposite to a certain event is an impossible event which contains no
sample point. In the present example, the event a number smaller than
1 is impossible. Regarding both a certain event and an impossible event

1 Readers unfamlhar with the terminology and the algebra of simple set theory may
consult Appendix IV.
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as subsets of the sample space is consistent with the usual practice in
set theory of regarding a set as a subset of itself, and the empty set as a
subset of any set. » -

Although every event is a subset of the sample space, it is not always
true that every subset of the sample space is an event. We postulate
that an event must be one for which a probability of oceurrence can be
specified. It is known in advanced probability theory that by use of
certain complicated limiting procedures we can obtain some subsets of an
uncountable sample space about which we cannot make consistent prob-
ability statements.. Fortunately, these sets have no engineering interest,
and a useful probability theory can still be formulated by excluding such
ill-conditioned sets from consideration. In short, it is enough for our
purposes to know that we can include as events all finite and countably
infinite subsets and those uncountable subsets which are composed of
.intervals. -

We state without proof that the family § of the probabilizable sub-
sets £ of a sample space Q@ satisfies the following statements:

1. I E &9, then E &5, where an upper bar denotes complementatior;
that is, £ means £ does not occur.
2. IfEef,i=1,2 ..., ,then UE=EVUEU... 5

i=1

Since the intersection and the difference operations can be indirectly per-
formed by use of the operations of complementation and union, a family
of probabilizable subsets of a sample space is closed under these set oper-
ations. (By the adjective closed we mean that the result of the set opera-~
tion on the members of the family § must also belong to this family.) A
family of subsets of a set which satisfies statements 1 and 2 is c:'led a
sigma algebra.

e / AXIOMS AND SOME THEOREMS OF PROBABILITY THEORY
With the above background, we can now state the following axioms of

probability theory:
Awiom 1. . For each member I belonging to a sigma algebra &
0<®E) <1

Here (L) denotes the probability of occurrence of the event £. It reads
“the probability measure of E,” or simply ‘“the probability of E.”

Aziom 2. ®(@Q) = 1.
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 Aziom 8. If Ey, E,, . . ., E, are mutually exclﬁsive, then

0(591 E)) = E ®(E;) _

J=1

where n may be finite or infinite.

A few observations are worth special attention. We first'note that
a probability measure @ is a set funclion, since its argument is generally
a set which may contain more than one point. Secondly. the probability
associated with the entire sample space Q, a certain event, is unity; thus
the assignment of probability measures to different events is analogous
to the distribution of a unit mass over the sample space. For this reason
some authors have aptly called @ the probability mass function. Thirdly,
in order that Axiom 3 may be satisfied, the probabilities assigned to
individual sample points in the case of an uncountable sample space must
be either all zero or nearly all zero except possibly for a subset of countable
sample points in the sample space. The third observation is not surpris-
ing if we compare this situation with the distribution of a finite load over
a continuous structure, say a fiat plate. If the total load is limited to
unity, then there can be at most a countable number of concentrated
loads acting on the plate. The nonconcentrated portion of the total
load is distributed in a prescribed manner over the surface of the plate.
Since a single point occupies a zero area on the surface, it is subjected to a
zero load if not directly under one of the conecentrated loads.

Theorems and definilions

1. Theorem of the Complementary Event.

o@) = 1 — ®(E) o ot 81
Cor:ﬂls.ry: _
®(¢) =0 (2-2)

‘where ¢ = { represents nothing happens, an lmpos31ble event.
2. Theorem of the Total Event.

CE,\J E,;) = @)+ (P(E,) ~ ®(E.N E,) . i (2-3)

Note that E; \U E; is the oceurrence of either E; or E;, and E; N E,
is the occurrence of both E; and E,.

Corolla.ry:

®(Ey\J E,U .. . \UE,) = Z0(E) — 20(E: N E))

+2PENENE) — - .-
+(=D'eENE. N - - - NE,) (2-4)
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where each summation includes.all distinct combinations of distinet
events. .

3. Defnition of Conditional Probability. The probability of the
occurrence of event E, conditional upon the occurrence of event E;, -
denoted by ®(H:|E)), is defined as

C(E, N E)
®(E,)

If ®(E;) = 0; the conditional probability is undefined.
4. Definition of Independence. Event F, is said to be independent of
event F, if ' }

®(E.|E,) = _if ®(E) >0 (2-5)

®(ES|E,) = ®(E,) (2-6)
5. Theorem pf Joint Events. ]

®(E;N E;) = (B O (Eo|Ey)
- G’(Eg)(”(EdEg) (9"7)
C(EL B NI L2 iE) = (P(E;)(P(EgIEx)(P(Ea]Ex N E,)
Fisly (9(E,,|E1ﬂ ng\ . e nE,.l_l) i (2‘8)

- %
There are n! ways of expressing the same joint probability in (2-8)
corresponding to the different permutation of Ey, Es, . . . , E,.
. Corollary: _
If By, Es, . . . , E, are independent one with the others, then

C(E;NE:N - - - NE,) = C(E)®(E,) - - - ®(E,) (2-9)

Although the probability of a certain event is 1 and the probability
of an impossible event is zero, the reverse is not necessarily true; that is,
an event with probability 1 is not always certain, nor is an event with
probability zero always impossible. - This observation bécomes clear if
we recall that generally we can only assign zero probability to a sample
point in a uncountable sample space. It is also important to note that
Eq. (2-9) may be true without the events E; being independent of each
other as a system. For all the events E; to be independent, all the
following equations would have to be satisfied:

®(E; N E;) = ®(E,)®(E))
C(E; N\ E; N\ By) = @(E)®(E;)®(E) : (2-10)

CPENENEN - - N\ E) = 0E)CEE) - - - O

However, when only two events are considered, then

C(E, N\ E,) = C(E)®(Ey)
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will lead to both
®(E\|E;) = ®(E) _and  ®(EJ|E,) = ®(E)

and the conclusion that they are truly mutually independent.

2.3 / STATISTICAL REGULARITY

The foregoing sections have been devoted to the development of a modern
concept of probability without being unduly rigorous. So far we have
remained unconcerned with physical realities. In particular, the ques-
tion of how to assign probabilities to physical events has been untouched.

It is not difficult to determine at least the general form of the prob-
ability measure @ for a simple random experiment such as flipping a coin
or tossing a die. In the example of flipping a coin, it is obvious that
®(H) = ®(T) = 4 if the coin is fair. Even when the coin is not fair we
can still write ®(H) = p and ®(T) = ¢ = 1 — p, and proceed to deter-
mine the more interesting probability for the number of H’s (or T’s)
obtained from flipping the same coin N times. The die-tossing problem
is similar.  Both problems are treated extensively in elementary books
on probability theory. It seems reasonable to assume, however, that
readers of this book are not interested merely in flipping coins or tossing
dice.  An immediate question in each mind more likely will be, How can
probabilities be determined for events associated with more complicated
engineering problems? Unfortunately, nature is generally reluctant to
reveal the exact probabilistic mechanism of a physical phenomenon, and
man ‘has to exercise his best judgment based upon some available clues.

Our daily experiences show that repeated trials of a random experi-
ment exhibit a certain regularity such that averages of the outcomes tend
to recognizable limits when the number of trials becomes large. This
tendency is called statistical regularity. 1t is important to note that we
speak of statistical regularity for each random experiment; i.e., the trials
are repeated under an identical set of conditions. Obviously, it would be
fruitless to attempt to establish any regularity for trials under different
sets of conditions.

Let N be the total number of trials of a random experiment, and
Ng the number of occurrences of an event E. We define the relative
frequency of the event E as

Ng

rv(E) = N (2-11)

One version of statistical regularity is stated as follows:

b}im Cllry(E) — pl > ¢} =0 (2-12)



