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Preface

Over the past 10-15 years, we have seen a revival of general Lévy processes
theory as well as a burst of new applications. In the past, Brownian motion or the
Poisson process have been considered as appropriate models for most applications.
Nowadays, the need for more realistic modelling of irregular behaviour of phenom-
ena in nature and society like jumps, bursts, and extremes has led to a renaissance of
the theory of general Lévy processes. Theoretical and applied researchers in fields
as diverse as quantum theory, statistical physics, meteorology, seismology, statistics,
insurance, finance, and telecommunication have realised the enormous flexibility
of Lévy models in modelling jumps, tails, dependence and sample path behaviour.
Lévy processes or Lévy driven processes feature slow or rapid structural breaks,
extremal behaviour, clustering, and clumping of points.

Tools and techniques from related but disctinct mathematical fields, such as point
processes, stochastic integration, probability theory in abstract spaces, and differen-
tial geometry, have contributed to a better understanding of Lévy jump processes.

As in many other fields, the enormous power of modern computers has also
changed the view of Lévy processes. Simulation methods for paths of Lévy pro-
cesses and realisations of their functionals have been developed. Monte Carlo
simulation makes it possible to determine the distribution of functionals of sample
paths of Lévy processes to a high level of accuracy.

This development of Lévy processes was accompanied and triggered by a series
of Conferences on Lévy Processes: Theory and Applications. The First and Second
Conferences were held in Aarhus (1999, 2002), the Third in Paris (2003), the Fourth
in Manchester (2005), and the Fifth in Copenhagen (2007).

To show the broad spectrum of these conferences, the following topics are taken
from the announcement of the Copenhagen conference:

o Structural results for Lévy processes: distribution and path properties
o Lévy trees, superprocesses and branching theory

o Fractal processes and fractal phenomena

o Stable and infinitely divisible processes and distributions

o Applications in finance, physics, biosciences and telecommunications
e Lévy processes on abstract structures

o Statistical, numerical and simulation aspects of Lévy processes

e Lévy and stable random fields.



vi Preface

At the Conference on Lévy Processes: Theory and Applications in Copenhagen
the idea was born to start a series of Lecture Notes on Lévy processes to bear witness
of the exciting recent advances in the area of Lévy processes and their applications.
[ts goal is the dissemination of important developments in theory and applications.
Each volume will describe state of the art results of this rapidly evolving subject
with special emphasis on the non-Brownian world. Leading experts will present
new exciting fields, or surveys of recent developments, or focus on some of the
most promising applications. Despite its special character, each article is written
in an expository style, normally with an extensive bibliography at the end. In this
way each article makes an invaluable comprehensive reference text. The intended
audience are PhD and postdoctoral students, or researchers, who want to learn about
recent advances in the theory of Lévy processes and to get an overview of new
applications in different fields.

Now, with the field in full flourish and with future interest definitely increasing
it seemed reasonable to start a series of Lecture Notes in this area. The present
volume is the first in the series, and future volumes will appear over time under the
common name “Lévy Matters”, in tune with the developments in the field. “Lévy
Matters™ will appear as a subseries of the Springer Lecture Notes in Mathematics,
thus ensuring wide dissemination of the scientific material. The expository articles
in this first volume have been chosen to reflect the broadness of the area of Lévy
processes.

The first article by Ken-iti Sato characterises extensions of the class of selfde-
composable distributions on RY. They are given as two families each with two
continuous parameters of classes of distributions of improper stochastic integrals
lim, .. [y f(s)dX, for appropriate non-random functions f and Lévy processes X.
Many known classes appear as limiting cases in some parameters: the Thorin class,
the Goldie-Steutel-Bondesson class, and the class of completely selfdecomposable
distributions. Moreover, the theory of fractional integrals of measures is built.

The second article by Thomas Duquesne discusses Hausdorff and packing mea-
sures of stable trees. Stable trees are a special class of Lévy trees, which form a
class of random compact metric spaces, and were introduced by Le Gall and Le Jan
(1998) as the genealogy of continuous state branching processes. It is shown that
level sets of stable trees are the sets of points situated at a given distance from the
root. In contrast to Brownian trees, for non-Brownian stable trees there is no exact
packing measure for level sets, i.e. the sets of points situated at a given distance
from the root.

The third (and last) article by Oleg Reichmann and Christoph Schwab presents
numerical solutions to Kolmogorov equations, which arise for instance in financial
engineering, when Lévy or additive processes model the dynamics of the risky as-
sets. Solution algorithms based on wavelet representations for the Dirichlet and free
boundary problems connected to barrier and American style contracts are presented.
Lévy copulas are used for a systematic construction of parametric multivariate
Feller-Lévy processes. Numerical aspects of the implementation and Monte Carlo
path simulation techniques are addressed.



Preface vii

We take the possibility to acknowledge the very positive collaboration with the
relevant Springer staff and the Editors of the LN Series, and the (anonymous) refer-
ees of the three articles.

We hope that the readers of this and subsequent volumes enjoy learning about
the high potential of Lévy processes in theory and applications. Researchers with
ideas for contributions to further volumes in the Lévy Matters series are invited to
contact any of the Editors with proposals or suggestions.

June 2010 Ole E. Barndorff-Nielsen (Aarhus)
Jean Bertoin (Paris)

Jean Jacod (Paris)

Claudia Kliippelberg (Munich)



A Short Biography of Paul Lévy

The first volume of the series “Lévy Matters” would not be complete without a short
sketch about the life and mathematical achievements of the mathematician whose
name has been borrowed and used here. This is more a form of tribute to Paul Lévy.
who not only invented what we call now Lévy processes, but also is in a sense the
founder of the way we are now looking at stochastic processes, with emphasis on
the path properties.

Paul Lévy was born in 1886, and lived until 1971. He studied at the Ecole Poly-
technique in Paris, and was soon appointed as professor of mathematics in the same
institution, a position that he held from 1920 to 1959. He started his career as an an-
alyst, with 20 published papers between 1905 (he was then 19 years old) and 1914,
and he became interested in probability by chance, so to speak, when asked to give a
series of lectures on this topic in 1919 in that same school: this was the starting point
of an astounding series of contributions in this field, in parallel with a continuing
activity in functional analysis.

Very briefly, one can mention that he is the mathematician who introduced
characteristic functions in full generality, proving in particular the characterisation
theorem and the first “Lévy’s theorem’ about convergence. This naturally led him to
study more deeply the convergence in law with its metric, and also to consider sums
of independent variables, a hot topic at the time: Paul Lévy proved a form of the
0-1 law, as well as many other results, for series of independent variables. He also
introduced stable and quasi-stable distributions, and unravelled their weak and/or
strong domains of attractions, simultaneously with Feller.

Then we arrive at the book “Théorie de I’addition des variables aléatoires”, pub-
lished in 1937, and in which he summarizes his findings about what he called
“additive processes” (the homogeneous additive processes are now called Lévy pro-
cesses, but he did not restrict his attention to the homogeneous case). This book
contains a host of new ideas and new concepts: the decomposition into the sum of
jumps at fixed times and the rest of the process; the Poissonian structure of the jumps
for an additive process without fixed times of discontinuities; the “compensation”
of those jumps so that one is able to sum up all of them; the fact that the remaining
continuous part is Gaussian. As a consequence, he implicitly gave the formula pro-
viding the form of all additive processes without fixed discontinuities, now called the
Lévy-1t6 Formula, and he proved the Lévy-Khintchine formula for the characteristic

Xiii



Xiv A Short Biography of Paul Lévy

functions of all infinitely divisible distributions. But, as fundamental as all those
results are, this book contains more: new methods, like martingales which, although
not given a name, are used in a fundamental way; and also a new way of looking at
processes, which is the “pathwise” way: he was certainly the first to understand the
importance of looking at and describing the paths of a stochastic process, instead of
considering that everything is encapsulated into the distribution of the processes.

This is of course not the end of the story. Paul Lévy undertook a very deep
analysis of Brownian motion, culminating in his book “Processus stochastiques et
mouvement brownien” in 1948, completed by a second edition in 1965. This is a
remarkable achievement, in the spirit of path properties, and again it contains so
many deep results: the Lévy modulus of continuity, the Hausdorff dimension of the
path, the multiple points, the Lévy characterisation theorem. He introduced local
time, proved the arc-sine law. He was also the first to consider genuine stochastic
integrals, with the area formula. In this topic again, his ideas have been the origin
of a huge amount of subsequent work, which is still going on. It also laid some of
the basis for the fine study of Markov processes, like the local time again, or the
new concept of instantaneous state. He also initiated the topic of multi-parameter
stochastic processes, introducing in particular the multi-parameter Brownian
motion.

As should be quite clear, the account given here does not describe the whole
of Paul Lévy’s mathematical achievements, and one can consult for many more
details the first paper (by Michel Loéve) published in the first issue of the Annals
of Probability (1973). It also does not account for the humanity and gentleness of
the person Paul Lévy. But I would like to end this short exposition of Paul Lévy’s
work by hoping that this new series will contribute to fulfilling the program, which
he initiated.

Jean Jacod (Paris)
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Fractional Integrals and Extensions
of Selfdecomposability

Ken-iti Sato

Abstract After characterizations of the class L of selfdecomposable distributions
on R? are recalled, the classes K, o and L, o with two continuous parameters
0 < p <o and —oo < @ < 2 satisfying Kj o = L) o = L are introduced as exten-
sions of the class L. They are defined as the classes of distributions of improper

stochastic integrals [~ f(s)dXsfp), where f(s) is an appropriate non-random func-

tion and X}p) is a Lévy process on R? with distribution p at time 1. The description
of the classes is given by characterization of their Lévy measures, using the notion
of monotonicity of order p based on fractional integrals of measures, and in some
cases by addition of the condition of zero mean or some weaker conditions that are
newly introduced — having weak mean O or having weak mean O absolutely. The
class L, ¢ for a positive integer n is the class of n times selfdecomposable distribu-
tions. Relations among the classes are studied. The limiting classes as p — oo are
analyzed. The Thorin class T, the Goldie-Steutel-Bondesson class B, and the class
L.. of completely selfdecomposable distributions, which is the closure (with respect
to convolution and weak convergence) of the class & of all stable distributions,
appear in this context. Some subclasses of the class L., also appear. The theory of
fractional integrals of measures is built. Many open questions are mentioned.
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2 K. Sato

1 Introduction

1.1 Characterizations of Selfdecomposable Distributions

A distribution u on R is called infinitely divisible if, for each positive integer ,
there is a distribution y,, such that

W= My Uy % - -k iy,
N—

n

where * denotes convolution. The class of infinitely divisible distributions on
R? is denoted by ID = ID(R?). Let Cy(z), z € RY, denote the cumulant func-
tion of u € ID, that is, the unique complex-valued continuous function on R?
with C;(0) =0 such that the characteristic function [I(z) of u is expressed as
[i(z) = e If u € ID, then Cy (2) is expressed as

1 iz .
Cu(2) = _§<Z’Auz> + /]R{d(e“"x> — 1 —i(2,x) <13 (X)) Vi (dx) + i{p, 7). (1.1)

Here (z,x) is the canonical inner product of z and x in RY, |x| = (x,x)'/2, 1<y
is the indicator function of the set {|x| < 1}, Ay is a d x d symmetric nonnegative-
definite matrix, called the Gaussian covariance matrix of {1, v, is a measure on R4
satisfying v, ({0}) = 0 and [ga(|x|*> A 1) vy (dx) < o, called the Lévy measure of .
and 7, is an element of RY. The triplet (Ay, vy, ) is uniquely determined by p.
Conversely, to any triplet (A, v, y) there corresponds a unique p € ID such that A =
Ay, v =vy,and y= y,. Throughout this article Ay, v;;, and 7, are used in this sense.

A distribution u on R is called selfdecomposable if, for any b > 1, there is a
distribution u;, such that

H(z)=[0b '2)mp(z), zeR% (1.2)

Let L = L(R?) denote the class of selfdecomposable distributions on R?. It is char-
acterized in the following four ways.

(a) A distribution u on R is selfdecomposable if and only if u € ID and its Lévy
measure v, has a radial (or polar) decomposition

/,1 dg/ 1(r&)r ke (r)dr (1.3)

for Borel sets B in RY, where A is a finite measure on the unit sphere S =
{E€R?: |E| =1} (ifd = 1, then S is the two-point set {1,—1})and kg(r)is a
nonnegative function measurable in £ and decreasing and right-continuous in
r. (See Proposition 3.1 for an exact formulation of the radial decomposition.)
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(b)

(c)

(d)

Let {Zy: k = 1,2,...} be independent random variables on R? and Y, =
Yi_1 Zk. Suppose that there are b, > 0 and ¥, € RY for n = 1,2,... such
that the law of b,Y, + 7, converges weakly to a distribution t as n — e and
that {b,Zy: k=1,...,n; n=1,2,...} is a null array (that is, for any € > 0,
max <<, P(|bnZ| > €) — 0 as n — o). Then u € L. Conversely, any u € Lis
obtained in this way.

Given p € ID, let {X,(p): t > 0} be a Lévy process on RY (that is, a stochastic
process continuous in probability, starting at 0, with time-homogeneous in-
dependent increments, with cadlag paths) having distribution p at time 1. If
Jix/>110g |x[p(dx) < o, then the improper stochastic integral o~ e=sdXP) is
definable and its distribution

1 :3(/ “eﬂ‘dx}p)) (1.4)
JO

is selfdecomposable. Here .Z(Y) denotes the distribution (law) of a random
element Y. Conversely, any pt € L is obtained in this way. On the other hand.

if fy>1 log |x|p(dx) = oo, then [5™~ e=5dX{?) is not definable. (See Section 3.4
for improper stochastic integrals.)
To see that u of (1.4) is selfdecomposable, notice that

00— logh ] 00—
/ e*\dxv(p) — / e*.\dXX(p) + e—s‘dxsgp) — ll +12~
0 o Jlogh

I} and I, are independent, and

o = —logh—s (p)
b= /0 € Xmogh+s

—p! / e—sayP).
Jo

where {Y;(p)} is identical in law with {X_s-(p)}, and hence y satisfies (1.2).

Let {,: ¢ > 0} be an additive process on R, that is, a stochastic process con-
tinuous in probability with independent increments, with cadlag paths, and
with Yy = 0. If, for some H > 0, it is H-selfsimilar (that is, for any a > 0, the
two processes {¥,;: t > 0} and {a"Y,: t > 0} have an identical law), then the
distribution u of Y is in L. Conversely, for any y € L and H > 0, there is a
process {Y;: t > 0} satisfying these conditions and .Z(Y;) = u.

Historically, selfdecomposable distributions were introduced by Lévy [18] in
1936 and written in his 1937 book [19] under the name “lois-limites”, to charac-
terize the limit distributions in (b). Lévy wrote in [18, 19] that this characterization
problem had been posed by Khintchine, and Khintchine’s book [16] in 1938 called
these distributions “of class L”. The book [9] of Gnedenko and Kolmogorov uses
the same naming. Logve’s book [20] uses the name “‘selfdecomposable”.

The property (c) gives a characterization of the stationary distribution of an
Ornstein—Uhlenbeck type process (sometimes called an Ornstein—-Uhlenbeck pro-
cess driven by a Lévy process) {V;: t > 0} defined by

1
Vi=e Vot [ e tax,
JO
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where Vy and {X,(p): t > 0} are independent. The stationary Ornstein—Uhlenbeck
type process and the selfsimilar process in the property (d) are connected via the
so-called Lamperti transformation (see [11, 26]). For historical facts concerning
(c) see [33], pp. 54-55.

The proofs of (a)—(d) and many examples of selfdecomposable distributions are
found in Sato’s book [39].

The main purpose of the present article is to give two families of subclasses of
ID, with two continuous parameters, related to L, using improper stochastic integrals
and extending the characterization (c) of L.

1.2 Nested Classes of Multiply Selfdecomposable Distributions

If u € L, then, for any b > 1, the distribution p, in (1.2) is infinitely divisible and
uniquely determined by ¢t and b. If u € L and y,, € L for all b > 1, then u is called
twice selfdecomposable. Let n be a positive integer > 3. A distribution u is called n
times selfdecomposable, if @ € L and if u;, is n — 1 times selfdecomposable. Let
Lio =L o(R?) = L(R?) and let L, o = L, o(R?) be the class of n times selfdecom-
posable distributions on R?. Then we have

IDDL=LigDLyyDLzpD:---. (1.5)

These classes and the class L..(R?) in Section 1.4 were introduced by Urbanik
[52,53] and studied by Sato [37] and others. (In [37,52,53] the class L, ¢ is written
as L,_, but this notation is inconvenient in this article.)

An n times selfdecomposable distribution is characterized by the property that
p € ID with Lévy measure v, having radial decomposition (1.3) in (a) with kg (r) =
he (logr) for some function hg (y) monotone of order n for each & (see Section 1.5
and Proposition 2.11 for the monotonicity of order n). In property (b), 1 € L, ¢
is characterized by the property that .£(Z;) € L, for k =1,2,.... In (¢c), u €
Ly is characterized by p € L, in (1.4). A direct generalization of (1.4) using
exp(—s'/") or, equivalently, exp(—(n!s)'/") in place of e~* is also possible. In (d),
W € L, if and only if, for any H, the corresponding process {Y;: t > 0} satisfies
LY, —Y) € Ly_y o for 0 < s <. The proofs are given in [12,25,33,37].

1.3 Continuous-Parameter Extension of Multiple
Selfdecomposability

In 1980s Nguyen Van Thu [49-51] defined a continuous-parameter extension of
L, o, replacing the positive integer n by a real number p > 0. He introduced
fractional times multiple Selfdecomposability and used fractional integrals and frac-
tional difference quotients. On the one hand he extended the definition of n times
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Selfdecomposability based on (1.2) to fractional times Selfdecomposability in the
form of infinite products. On the other hand he extended essentially the formula
(1.4) in the characterization (c), considering its Lévy measure.

Directly using improper stochastic integrals with respect to Lévy processes, we
will define and study the decreasing classes L, for p > 0, which generalize the
nested classes L, o for n = 1,2,.... Thus the results of Thu will be reformulated
as a special case in a family L, o with two continuous parameters 0 < p < e and
—oo < ¢ < 2. The definition of L, o will be given in Section 1.6.

1.4 Stable Distributions and the Class L..

Let u be a distribution on RY. Let 0 < o < 2. We say that u is strictly a-stable if
@ € ID and, for any t > 0, fi(z)" = [i(t'/%z), z € RY. We say that y is a-stable if
i € ID and, for any ¢ > 0, there is 3 € R? such that [i(z)" = f(¢'/%z)exp(i(¥%,2)),
z€R?. (When u is a §-distribution, this terminology is not the same as in Sato [39].)
Let &Y = GY%(R?) and G4 = G4 (RY) be the class of strictly ¢-stable distributions
on R and the class of a-stable distributions on RY, respectively. Let G = G(RY)
be the class of stable distributions on RY. That is, & = Uy 4<2 G- A distribution
W € 1ID is in G, if and only if v, =0, that is, u is Gaussian. A distribution u € ID
is in G4 with 0 < o0 < 2 if and only if Ay = 0 and v, has a radial decomposition
(1.3) with kg(r) = r~%. A distribution 4 € S with | < & <2 is in &Y, if and
only if u has mean 0. A distribution 4 € G| is in G(I) if and only if v, has a radial
decomposition (1.3) with kg (r) = r~!and [(EA(dE) = 0. A distribution p € &4
with 0 < o < 1isin &Y if and only if it is driftless in the sense that

Cul2) = ./Sl(dé)/o (05D 1)ty zeR

Lots of results are accumulated on stable distributions and processes. To mention
one of them, the asymptotic behavior of the density of u € G4(R?), d > 2, o €
(0,2), sensitively depends on the radial direction and exhibits amazing diversity, as
Watanabe [54] shows.

Let L.. = L.(R?) denote the smallest class that is closed under convolution
and weak convergence and contains G(IRY). This class was introduced by Urbanik
[52,53] and reformulated by Sato [37]. If i € L, then u € ID with Lévy measure
vy being such that

vu(B) = (O‘Z)F(da)/sla(dé)./o 1g(r&)r—"dr (1.6)

for Borel sets B in RY, where I' is a measure on the open interval (0,2) satisfying

/ (@' +2—a) ) (da) < o (1.7)
J(0,2)
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and {Ay: o € (0,2)} is a measurable family of probability measures on S. This I" is
determined by v, and Ay is determined by v, up to ¢ of I'-measure 0. Conversely,
if a measure v on R? is expressed by the right-hand side of (1.6) with some I" and
A satisfying the conditions above, then, for any A and 7, (A,v,7) is the triplet of
some U € L.

We will also use the class LE = LE(R?) for a Borel subset E of the open interval
(0,2); this is the class of u € L., whose measure I" is concentrated on E.

Another characterization of L..(R?) is that 4 € L.. if and only if u € L and vy
has a radial decomposition (1.3) with kg (r) = hg (logr) where hg is a completely
monotone function on R for each &. Hence we have

L.= (] Lup (1.8)

=12

Thus distributions in L.. are sometimes called completely selfdecomposable.
Zinger [57] introduced a subclass &2, (r being a positive integer) of the class
L(R); it is defined to be the class of limit distributions u in (b) of Section 1.1 such
that {-Z(Z): k = 1,2,...} consists of at most r different distributions on R. It is
known that £, = G(R) and that u € 22, if and only if u is the convolution of at
most two stable distributions. In [57] a beautiful explicit description of the Lévy
measures of distributions in 22, is given and it is shown that a distribution in 22,
with r > 3 is not necessarily the convolution of stable distributions on R. Any u
in 2, is the convolution of at most r semi-stable distributions of a special form.
However, no other characterization of .22, exists, as far as the author knows.

1.5 Fractional Integrals

The key concept to connect the representation of Lévy measures for the class L(RY)
and that for the class L..(RY) is monotonicity of order p € (0,e0). It is defined by
using the notion of fractional integrals or Riemann-Liouville integrals. Let us write

I,=I(p), ¢ =1/I'(p)

throughout this article. The fractional integral of order p > 0 of a function f(s) on
R in a suitable class is given by

&p /rm(s — )P f(s)ds,

which is the interpolation (1 < p < ) and extrapolation (0 < p < 1) of the n times
integration

./rwds,, ./:ds,l_[ --~/:f(s|)ds| - ﬁ/rw(s—r)"*'f(s)ds‘



