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PREFACE to the preprint edition

This book is designed to cover material commonly presented in a second
programming course. It includes the majority of topics currently being con-
sidered for inclusion in the second course of the Revised ACM Curriculum
'68 Recommendations.

Our objective in writing this book was to bring together much of the
material necessary for a novice programmer to mature into a professional.
This aim is accomplished by discussing principles and then presenting examples
which adhere to these principles. Most example programs presented here are
non-trivial. In all cases, these programs are carefully documented, represent
weli-structured algorithms and have been extensively machine tested.

The programming Tanguage which we use to implement our algorithms is
FORTRAN. We present specific details on the WATFIV dialect and on those
dialects of 1966 ANS FORTRAN IV as implemented on the IBM 360-370 and DEC-10
series machines. Where appropriate, we discuss changes to FORTRAN IV which
have been made in the new ANS proposed standard (FORTRAN 77).

We have written this book to be usable both by students of computer
science and by major computer users. No extraordinary sophistication is
assumed of our réaders. The only background we require is programming ex-
perience equivalent to having successfully completed-a basic course in some
procedure-oriented language (not necessarily FORTRAN).

The material we present here is organized into nine chapters and two
appendices. The first two chapters (0 and 1) form the introduction. In
Chapter 0 we discuss that portion of the FORTRAN language which is assumed
in subsequent chapters. The presentation here is brief, gerving as a review

for those already having a basic knowledge of FORTRAN and as a primer for the




reader who knows some other procedure-oriented language. In Chapter 1 we
introduce topics of algorithm selection, program development, programming
style. documentation standards, debugging techniques and program maintenance.

In Chapters 2, 3 and 4 we present advanced features of the FORTRAN
lanquage. In Chapter 2 we discuss subprograms, with a particular emphasis
on argument passing techniques. In Chapter 3 we deal with character manipu-
lation. We describe the organization of tapes and disks in Chapter 4 and
present FORTRAN statements for utilizing these devices. In addition, we
introduce some relevant features of the IBM 0S/360 and DEC-10 TOPS command
lanaua ge.

Chapters 0 through 4 contain examples whose data structures are naturally
represented by scalars and arrays, In Chapter 5 we present techniques for
representing and manipulating complex data structures (linked 1lists, stacks,
queues, trees).

In Chapters 6, 7 and 8 we describe aspects of the environment -- software
and hardware -- in which a user program must reside. In Chapter 6 we discuss
the representation of data within digital computers. We present elementary
machine organization in Chapter 7. Finally, in Chapter 8 we discuss techniques
for reducing the cost of program development, maintenance and execution.
Specifically, we introduce our readers to the notions of object decks, pro-
gram relocation, loading and overlay structures.

In Appendix 1 we summarize features of FORTRAN 77 which differ from those
of FORTRAN IV as presented in the main parts of this text. Appendix 2 lists
and defines each of the function subprograms which are standardly built into
most FORTRAN dialects. [The appendices are not supplied with this preprint

edition, but will be provided in the standard text.]
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CHAPTER 0

PRELIMINARIES

0.1 OVERVIEW

This book will help you to become a mature programmer. In it you
will see examples of the tools and the technigues that experienced
programmers use in solving their problems. We have chosen FORTRAN as
the basis for our discussion, but much of what you will learn here also
applies to other languages. We will describs many properties of
computing, independent of the language being used.

As programmers mature, they develop "style," which msans that they
adopt certain habits of program structure, documentation, and coding.
Chapter 1 is devoted to programming style, and we will also note points
of good style throughout this text. 1In Chapters 2 to 4, you <can learn
about topics such as subprogram usage, character manipulation, and tape
and disk I/0. 1In later chapters you will learn about the environment in
which your program runs; we describe the intarnal reprzsentation of
data, the structure of a digital computer, and the process of progranm
execution.

Perhaps you have never learned FORTRAN, Or your exposure to it
occurred some time ago. This book has been designed for use by anyone
with experience in some procedure-oriented language. If you know a
language such as !PL/I, !ALGOL, tPASCAL or !COBOL, you should have no
trouble 1learning FORTRAN. This preliminary chapter presa2nts the
material that you will need later. Even if you already know FORTRAN, we
suggest that you read this chapter to refresh your memory and to
guarantee that you know all of this background material. The
description of each statement has been condensed to a block and shaded
so that you can refer to it quickly.

In this text we describe FORTRAN as standardized by the American
National Standards Institute in report X3.9-1965. A new standard has
been proposed and appears to have achieved a favorable response; this
new version is called FORTRAN 77. 1In places where the new fora differs
from the standard, we will mark that section with a vertical bar in the
margin; you should refer to Appendix 2 for a description of the change.

Some features of FORTRAN depend on which computer and vhich
compiler are being used. sSome compilers accept part or all of standard
FORTRAN, and some allow extensions to the standard. We will call each
combination of a machine and a compiler a dialect. Many of our
dialect-dependent examples are based on two widely used dialects: the
IBM 360-370 computers under the WATFIV compiler, and the DEC 10 compater

with the compiler FORTRAN-10.
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0.2 BACKGROUND AND DEFINITIONS
0.2.1 Statement Form

A FORTRAN program consists of a series of stataments; these
statements appear in a fixed form on input records with at most one
statement per record. Each statement looks like the punched card in
Figure 0-1. Although the actual input medium could be something else,
such as a line of a typewriter terminal or a record on a paper taps, we
will speak as if the input comes from cards.

JE S 1
r//;TMT [C} } l
| o =0| STATEMENT BODY j SRUENGE
| comment I NI I
[ I VR ——

columr[1 ) 5 6 7 7 ) 72 '73 - 80

Figure 0-1 FORTRAN Statement Format -

A statement number in FORTRAN is a number appearing anywhere in
columns 1 to 5. A statement number is used on a statement that needs to
be related to other statements in the progran. On most FORTRAN
statements, the number may be omitted.

The body of a statement is punched in columns 7 to 72. Blanks are
ignored in the statement body (except within character data, to be
described shortly); this implies that the body need not begin =xactly at
column 7, and that blanks may be inserted as desired to improve
readability.

If the body of one statement is too long to fit on a single cari,
the statement may be continued by punching any character, 2xcept a blank
or zero, in the «continuation field (column 6) of the next card, and
continuing the statement 1in <columns 7 to 72 of this new card.
Additional continuations may be made by punching a nonblank character in
column 6 of succeeding cards. A maximum of 20 cards (19 continuations)
is allowed for any one statement.

Columns 73 to 80 are reserved for a sequence number, although this
may be omitted. {(For some input forms other than zards, this field does
not exist, or it may be filled in for you.) On large pragraas it is a
good idea to punch numbers in this field to help you sort the input deck

if it should be dropped.

Column 1 is used to identify comments. Any card with the letter C
in column 1 is taken as a comment and is ignor2d by the compiler.
Comments are used to identify a program, to separate a program into

logical segments, or to explain a particular segment of a progran.
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