¢
~
e
e~
(2
S
S
>

%% PREPRINT EDITION - 12/1/77 - PREPRINT EDITION *x

ADVANCED PROGRAMMING TECHNIQUES
A Second Course in Programming

using FORTRAN

by

Charles E. Hughes
Charles P. Pfleeger
Lawrence L. Rose

published by

John Wiley and Sons, Inc.
New York London Sydney Toronto

#% PREPRINT EDITION - 12/1/77 - PREPRINT EDITION **

-2 5062410

% PREPRINT EDITYON - 12/1/77 - PREPRINT EDITION #*x*

ADVANCED PROGRAMMING TECHNIQUES
A Second Course in Programming

using FORTRAN

by

Charles E. Hughes
Charles P. Pfleeger
Lavrence L. Rose

published by

John Wiley and Sons, Inc.
New York ©London Sydney Toronto

** PREPRINT EDITION - 12/1/77 - PREPRINT EDITION **

HREIRRAID

E9062410

PREFACE to the preprint edition

This book is designed to cover material commonly presented in a second
programming course. It includes the majority of topics currently being con-
sidered for inclusion in the second course of the Revised ACM Curriculum
'68 Recommendations.

Our objective in writing this book was to bring together much of the
material necessary for a novice programmer to mature into a professional.
This aim is accomplished by discussing principles and then presenting examples
which adhere to these principles. Most example programs presented here are
non-trivial. In all cases, these programs are carefully documented, represent
weli-structured algorithms and have been extensively machine tested.

The programming Tanguage which we use to implement our algorithms is
FORTRAN. We present specific details on the WATFIV dialect and on those
dialects of 1966 ANS FORTRAN IV as implemented on the IBM 360-370 and DEC-10
series machines. Where appropriate, we discuss changes to FORTRAN IV which
have been made in the new ANS proposed standard (FORTRAN 77).

We have written this book to be usable both by students of computer
science and by major computer users. No extraordinary sophistication is
assumed of our réaders. The only background we require is programming ex-
perience equivalent to having successfully completed-a basic course in some
procedure-oriented language (not necessarily FORTRAN).

The material we present here is organized into nine chapters and two
appendices. The first two chapters (0 and 1) form the introduction. In
Chapter 0 we discuss that portion of the FORTRAN language which is assumed
in subsequent chapters. The presentation here is brief, gerving as a review

for those already having a basic knowledge of FORTRAN and as a primer for the

reader who knows some other procedure-oriented language. In Chapter 1 we
introduce topics of algorithm selection, program development, programming
style. documentation standards, debugging techniques and program maintenance.

In Chapters 2, 3 and 4 we present advanced features of the FORTRAN
lanquage. In Chapter 2 we discuss subprograms, with a particular emphasis
on argument passing techniques. In Chapter 3 we deal with character manipu-
lation. We describe the organization of tapes and disks in Chapter 4 and
present FORTRAN statements for utilizing these devices. In addition, we
introduce some relevant features of the IBM 0S/360 and DEC-10 TOPS command
lanaua ge.

Chapters 0 through 4 contain examples whose data structures are naturally
represented by scalars and arrays, In Chapter 5 we present techniques for
representing and manipulating complex data structures (linked 1lists, stacks,
queues, trees).

In Chapters 6, 7 and 8 we describe aspects of the environment -- software
and hardware -- in which a user program must reside. In Chapter 6 we discuss
the representation of data within digital computers. We present elementary
machine organization in Chapter 7. Finally, in Chapter 8 we discuss techniques
for reducing the cost of program development, maintenance and execution.
Specifically, we introduce our readers to the notions of object decks, pro-
gram relocation, loading and overlay structures.

In Appendix 1 we summarize features of FORTRAN 77 which differ from those
of FORTRAN IV as presented in the main parts of this text. Appendix 2 lists
and defines each of the function subprograms which are standardly built into
most FORTRAN dialects. [The appendices are not supplied with this preprint

edition, but will be provided in the standard text.]

-3-

The authors wish to acknowledge the many helpful suggestions offered by
Al Davis and our other three (anonymous) referees. We wish to thank the many
students who braved their way through earlier versions of the text. Finally,
we wish to express our gratitude to Joyce Marlar who skilifully typed much of
the original manuscript.

A1l program presented here were tested using the IBM 360 model 65 at the
University of Tennessee Computing Center. In addition, several of them were
tested on the DEC-10 KL processor at the University of Tennessee and on the
DEC=10 KA processor operated by the Ohio State University's Computer and

Information Sciences Department.

This is a special preprint edition. The final version is presently
being typeset, and shouid be available during the spring of 1978. The
authors would appreciate any comments on this edition, especially those
pointing out errors in the text. Any errors should be reported to

Charles E. Hughes

The University of Tennessee
Computer Science Department
Knoxville, Tennessee 37916
phone (615) 974-5067

We appreciate your using this version.

Charies E. Hughes

Charles P. Pfleeger
Lawrence L. Rose

12/3/77

*% PREPRINT EDITION - 12/1/77 ** 1

CHAPTER 0

PRELIMINARIES

0.1 OVERVIEW

This book will help you to become a mature programmer. In it you
will see examples of the tools and the technigues that experienced
programmers use in solving their problems. We have chosen FORTRAN as
the basis for our discussion, but much of what you will learn here also
applies to other languages. We will describs many properties of
computing, independent of the language being used.

As programmers mature, they develop "style," which msans that they
adopt certain habits of program structure, documentation, and coding.
Chapter 1 is devoted to programming style, and we will also note points
of good style throughout this text. 1In Chapters 2 to 4, you <can learn
about topics such as subprogram usage, character manipulation, and tape
and disk I/0. 1In later chapters you will learn about the environment in
which your program runs; we describe the intarnal reprzsentation of
data, the structure of a digital computer, and the process of progranm
execution.

Perhaps you have never learned FORTRAN, Or your exposure to it
occurred some time ago. This book has been designed for use by anyone
with experience in some procedure-oriented language. If you know a
language such as !PL/I, !ALGOL, tPASCAL or !COBOL, you should have no
trouble 1learning FORTRAN. This preliminary chapter presa2nts the
material that you will need later. Even if you already know FORTRAN, we
suggest that you read this chapter to refresh your memory and to
guarantee that you know all of this background material. The
description of each statement has been condensed to a block and shaded
so that you can refer to it quickly.

In this text we describe FORTRAN as standardized by the American
National Standards Institute in report X3.9-1965. A new standard has
been proposed and appears to have achieved a favorable response; this
new version is called FORTRAN 77. 1In places where the new fora differs
from the standard, we will mark that section with a vertical bar in the
margin; you should refer to Appendix 2 for a description of the change.

Some features of FORTRAN depend on which computer and vhich
compiler are being used. sSome compilers accept part or all of standard
FORTRAN, and some allow extensions to the standard. We will call each
combination of a machine and a compiler a dialect. Many of our
dialect-dependent examples are based on two widely used dialects: the
IBM 360-370 computers under the WATFIV compiler, and the DEC 10 compater

with the compiler FORTRAN-10.

2 *% PREPRINT EDITION - 12/1/77 *x

0.2 BACKGROUND AND DEFINITIONS
0.2.1 Statement Form

A FORTRAN program consists of a series of stataments; these
statements appear in a fixed form on input records with at most one
statement per record. Each statement looks like the punched card in
Figure 0-1. Although the actual input medium could be something else,
such as a line of a typewriter terminal or a record on a paper taps, we
will speak as if the input comes from cards.

JE S 1
r//;TMT [C} } l
| o =0| STATEMENT BODY j SRUENGE
| comment I NI I
[I VR ——

columr[1) 5 6 7 7) 72 '73 - 80

Figure 0-1 FORTRAN Statement Format -

A statement number in FORTRAN is a number appearing anywhere in
columns 1 to 5. A statement number is used on a statement that needs to
be related to other statements in the progran. On most FORTRAN
statements, the number may be omitted.

The body of a statement is punched in columns 7 to 72. Blanks are
ignored in the statement body (except within character data, to be
described shortly); this implies that the body need not begin =xactly at
column 7, and that blanks may be inserted as desired to improve
readability.

If the body of one statement is too long to fit on a single cari,
the statement may be continued by punching any character, 2xcept a blank
or zero, in the «continuation field (column 6) of the next card, and
continuing the statement 1in <columns 7 to 72 of this new card.
Additional continuations may be made by punching a nonblank character in
column 6 of succeeding cards. A maximum of 20 cards (19 continuations)
is allowed for any one statement.

Columns 73 to 80 are reserved for a sequence number, although this
may be omitted. {(For some input forms other than zards, this field does
not exist, or it may be filled in for you.) On large pragraas it is a
good idea to punch numbers in this field to help you sort the input deck

if it should be dropped.

Column 1 is used to identify comments. Any card with the letter C
in column 1 is taken as a comment and is ignor2d by the compiler.
Comments are used to identify a program, to separate a program into

logical segments, or to explain a particular segment of a progran.

Chapter O

cCUVpPwWNP

uuuvuumuwn

eloNeoNeoNoNoNe

L] L]
oo OO
a e

oOoooo
AwWN R

NN~

P wmnp

OCO0OO0OO0O0O

o
oo

TABLE OF CONTENTS

PRELIMINARIES
OVERVIEW

BACKGROUND AND DEFINITIONS
Statement Form

Data Types

Operators

Expressions

Notation

NONEXECUTABLE STATEMENTS
Specification Statements
The END Statement

THE ASSIGNMENT STATEMENT

INPUT/O0UTPUT STATEMENTS

Lists of Variables for Input and Output
Free-Format Input

Free-Format Output

The FORMAT Statement and Formatted I/0
Formatted READ

Formatted WRITE

LGCAL CONTROL OF EXECUTION
Execution Termination
Unconditional Branching
Conditional Branching
Automatic Loopinsg

SUBPROGRAMS

Introduction

Argument Lists

Built-In Functions

User-defined Function Subprograms
User-defined Subroutine Subprograms

AN EXAMPLE

Exercises

H

O ~NOWNN

O O

12

14
14
15
16
16
17
19

21
21
22
22
24

27
27
27
29
30
32

35

41

Chapter 1

:a ® 8 W~ L] s @8 B2 8 ® 3 @ =»
N P N = N = WwN

PRRPPRPRPRRRPRRRRRRPRRER
®NCOCOCVUUARWWWNNNN R

[N
O

PROGRAMMING STYLE

An Example
Documentation

External Documentation
Internal Documentation
Additional Techniaues
Program Structure

The GOTO Controversy
Control Structures
Defensive Programming
Debugging Techniaues
Tools for Debugging

So How Does One Debusg?
Efficiency

Machine Time/Space Efficiency

Algorithm Efficiency
Modifiability

Shared Storage Locations:
The EQUIVALENCE Statement

A Revised Example

101

101
103
103
104
106
109
109
111
113
114
114
118
121
121
122
129

132
135

Chapter 2 SUBPROGRAMS 201

2:1 Elementary Characteristics

of FORTRAN Subprograms 201
2.0.1 Overview and Review

of Subprogram Definitions 201
2.1.2 Review of Subroutine Subprograms 203
2:2 Argument Passing 203
2.2.1 Basic Rules of Actual/Dummy

Argument Association 203
2i2:2 Common Implementation Techniaues

for Argument Association 204
25203 Association by Name 204
2.2.4 Association by Value 206
2.3 Advanced Subprogram Features 207
2.3.1 Alternate Exits from Subroutines 207
2+3:2 Multiple Entries 209
2:3:3 Subprograms as Arguments 211
2.3.4 Adiustable Dimensions 243
2.4 Table Lookup by Hash Coding 213
2.5 DATA Statements in Subprograms 218
2.6 COMMON -- FORTRAN's Way to Make Data

Global 219
Zubal Local Versus Global 219
2.6.2 COMMON -- Its Standard Usage 219
2.6.3 Inconsistent Definitions of COMMON 223
2.6.4 Named COMMON 225
24645 The Interaction of COMMON

and EBUIVALENCE 225
2.6.6 Data Initialization of Elements in

Common Blocks 227
2.7 Statement Functions 227
2.8 A Final Example -- Random Number

Generators 228
2.8:1 The Notion of Pseudo-Random Seaquences 228
2.8.2 A Multiplicative Random Number Generator 229
2843 Monte Carlo Integration 229

Exercises 233

Chapter 3 NON-ARITHMETIC PROGRAMMING ' 301
3.1 Characters as Data 301
3,2 Character Encodings 301
3:;3 Character Input and Output 302
3.4 Character Constants 303
3.5 Character Operations 304
3.6 Example: Format-free Integer Output 304
3.7 Other Character Manipulating Technidques 310
3«8 CHARACTER Data Type -- WATFIV and FORTRAN

7 312
3.8.1 Character Constants 313
3.9 Examples 314

Exercises 326

Charter 4

o, WNE

e wNn e

T N N NN N NN N N N NI N NI N
WWWRNRNNNMNNNR PR RRRE R R

N B

TN NN NN NN
%, N NN
udHwmn e

EXTENDED I/0: TAPES AND DISKS

The Physical Organization of Ta
Recording of Data

pes

Fixed and Variable Length Records

The Record Update Probiem

Files of Data

Physical Characteristics of Tap
Transfer Rates Achieved by Taee

FORTRAN Statements for Tape Processing

Formatted Tape Input/Qutput
Unformatted Tape Input/Output
BACKSPACE

ENDFILE

REWIND

Tarpe Processing: Case Studies

e
S

Device Assignments Using IBM 0S/JCL

Device Assignments Using the DEC System

10

Direct Access Devices

Characteristics of Some Disks

Management of Disk Space -- IBM 360-370 0S
Management of Disk Space -- DEC System 10

Seaquential Processing of Disk Files

Random Processing of Disk Files

Assigsnment of Files to Direct Access

Devices Case Studies

Direct Access Device Assignment
IBM 0S/JCL

Direct Access Device Assignment
the DEC System 10

A Keyword-Based Book Retrieval

Exercises

Using

Using

System

401

401
401
403
405
406
407
407
408
408
409
410
411
411
412
412

417
419
420
421
421
421
422

424

424

425
425

436

Chapter 5 DATA STRUCTURES ‘ 501
5.1 Choosing a Data Structure 501
5.2 Non-Seaquential Lists 501
5.3 List Additions and Deletions 505
5.4 Bueues 508
545 Stacks 510
5:i6 Multilinked Lists 515
5¢631 Singly-Linked Lists 515
5.6.2 Bidirectional Lists 517
5:7 Trees 547
5.7.1 Binary Trees 518
5:7 a2 A Binary Search Tree Application --

Symbol Table Management 520
5.8 A Simulation Example 523
5.8.1 Backg€round 523
5.8.2 The Problem 523
5.8.3 The Design of the Simulator 524

Exercises 536

Chapter 6

oo

ocoocooooo

ocoooo o

o o

PBUNRPRPR

@ o~No WU
[N

@

= o
o

wnN P

w N

MACHINE REPRESENTATION OF DATA

Binary Representation of Integers

Sign and Magnitude

Ones Complement

Twos Complement

Binary Representation of Real Numbers
Errors and Loss of Precision -- Integers
Errors and Loss of Precision --

Real Numbers

Double Precision

Octal and Hexadecimal Numbers

Number Representation on an IBM 360-370
Memory Organization on the IBM 360-370
Bytessy Half Wordss Full Words and
Double Words

Variable Types

Logical*| Variables and Character
Manipulation

Number Representation on a DEC-10
Memory Organization on the DEC-10

Exercises

601

601
601
602
603
603
605

606
608
608
610
611

611
612

613
614
615

616

Chapter 7 ELEMENTARY MACHINE ORGANIZATION 701
7.1 The Hardware Components of a Computer

System 701

7.1.1 Main Memory 701

Te1.2 Central Processing Unit 702

Tslal Arithmetic and Logical Unit 703

A A Simple Machine 703

7.2.1 Detailed Description of the SADSAC Machine 703

dslnd Assembler Language Programming for SADSAC 705

T:i2:3 Simulation of SADSAC Machine 708

Exercises 713

Chapter 8 EFFECTIVE PROGRAMMING -- USING OPERATING

SYSTEM FACILITIES 801
8.1 Operating Systems 801
8.2 Compilers 802
8.3 Object Code 803
8.4 Relocation 803
8.5 Overlay Structures 805
8.6 Case Study: DEC-10 807
8.7 Case Study: IBM 360-370 808

#% PREPRINT EDITION - 12/1/77 ** 1

CHAPTER 0

PRELIMINARIES

0.1 OVERVIEW

This book will help you to become a mature programmer. In it you
will see examples of the tools and the techniques that experienced
programmers use in solving their problems. We have chosenr FORTRAN as
the basis for our discussion, but much of what you will learn here also
applies to other languages. We will describs many properties of
computing, independent of the language being used.

As prograumers mature, they develop "style," which msans that they
adopt certain habits of program structure, dozumentation, and coding.
Chapter 1 is devoted to programming style, and we ¥ill also note points
of good style throughout this text. 1In Chapters 2 to 4, you <can learn
about topics such as subprogram usage, character manipulation, and tape
and disk I/0. 1In later chapters you will learn about the 2nvironment in
which your program runs; we describe the intarnal representation of
data, the structure of a digital computer, and the process of program
execution.

Perhaps yon have never learned FORTRAN, Or Yyour exposure to it
occurred some time ago. This book has been designed for use by anyone
with experience in some procedure-oriented language. If you know a
language such as !PL/I, !ALGOL, !PASCAL or 1 COBOL, you should have no
trouble learning FORTRAN. This preliminary chapter presants the
material that you will need later. Even if you already know FORTRAN, we
suggest that you read this chapter to refresh your memory and to
guarantee that you know all of this background material. The
description of each statement has been condensed to a block and shaded
so that you can refer to it quickly.

In this text we describe FORTRAN as standardized by the American
National Standards Institute in Teport X3.9-1965. A new standard has
been proposed and appears to have achieved a favorable response; this
new version is called FORTRAN 77. 1In places where the new fora differs
from the standard, we will mark that section with a vertical bar in the
margin; you should refer to Appendix 2 for a description of the change.

Some features of FORTRAN depend on which computer and which
compiler are being used. Some compilers accept part or all of standard
FORTRAN, and some allow extensions to the standard. We will call each
combination of a machine and a compiler a dialect. Many of our
dialect-dependent examples are based on two widely used dialects: the
IBM 360-370 computers under the WATFIV compiler, and the DEC 10 computer

with the compiler FORTRAN-10.

