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PREFACE TO THE
SECOND EDITION

This edition differs from the original mainly by the addition of a
seventh chapter, on the classical invariant theory of finite reflection
groups. Most of the changes in the original six chapters are corrections of
misprints and minor errors. We are indebted, however, to Klaus Benkert
of the RWTH Aachen for pointing out to us Proposition 5.1.5, making
possible a neater discussion of the positive definiteness of marked graphs.
We have also added an appendix listing the Schoenflies and International
notations for crystallographic point groups.

Since many beginning German courses in the United States seem no
longer to include an introduction to German script, it may be helpful to
some readers if the script letters used in Chapter 7 are introduced here with -
their Roman counterparts.

German
BEEDE S | a i TR Oy ERA O S

Roman |2 b°c. F I K L By

Our thanks go to David Surowski and Dick Pierce for reading drafts
of Chapter 7 and suggesting corrections and improvements, to Helen
Grove for typing the new chapter and, belatedly, to Sandra Grove for
proofreading the first six.

August 1984 L.C.G. anp C.T.B.



PREFACE TO THE FIRST EDITION

This book began as lecture notes for a course given at the University
of Oregon. The course, given for undergraduates and beginning graduate
students, follows immediately after a conventional course in linear
algebra and serves two chief pedagogical purposes. First, it reinforces
the students’ newly won knowledge of linear algebra by giving applica-
tions of several of the theorems they have learned and by giving geo-
metrical interpretations for some of the notions of linear algebra. Second,
some students take the course before or concurrently with abstract
algebra, and they are armed in advance with a collection of fairly concrete
nontrivial examples of groups.

The first comprehensive treatment of finite reflection groups was
given by H. S. M. Coxeter in 1934. In [9] he completely classified the
groups and derived several of their properties, using mainly geometrical
methods. He later included a discussion of the groups in his book Regular
Polytopes [10]. Another discussion, somewhat more algebraic in nature,
was given by E. Witt in 1941 [37]. An algebraic account of reflection
groups was presented by P. Cartier in the Chevalley Seminar reports
(see [6]). Another has recently appeared in N. Bourbaki’s chapters on
Lie groups and Lie algebras [3].

Since the sources cited above do not seem to be easily accessible to
most undergraduates, we have attempted to give a discussion of finite
reflection groups that is as elementary as possible. We have tried to reach
a middle ground between Coxeter and Bourbaki. Our approach is
algebraic, but we have retained some of the geometrical flavor of
Coxeter’s approach.

vii



viii Preface to the First Edition

Chapter 1 introduces some of the terminology and notation used
later and indicates prerequisites. Chapter 2 gives a reasonably thorough
account of all finite subgroups of the orthogonal groups in two and three
dimensions. The presentation is somewhat iess formal than in succeeding
chapters. For instance, the existence of the icosahedron is accepted as an
empirical fact, and no formal proof of existence is included. Throughout
most of Chapter 2 we do not distinguish between groups that are ‘*geo-
metrically indistinguishable,” that is, conjugate in the orthogonal group.
Very little of the material in Chapter 2 is actually required for the sub-
sequent chapters, but 1. serves two important purposes: It aids in the
development of geometrical insight, and it serves as a source of illustrative
examples.

There is a discussiun of fundamental regions in Chapter 3. Chapter 4
provides a correspondence between fundamental reflections and funda-
mental regions via a discussion of root systems. The actual classification
and construction of finite reflection groups takes place in Chapter 5.
where we have in part followed the methods of E. Witt and B. L. van der
Waerden. Generators and relations for finite reflection groups are
discussed in Chapter 6. There are historical remarks and suggestions for
further reading in a Postlude.

Since we have written with the student in mind we have'included
considerable detail and a number of illustrative examples. Exercises are
included in every chapter but the first. The results of some of the exercises
are used in the body of the text. The list of identifications in Exercise 5.7
was worked out by one of our students, Leslie Wilson.

We wish to thank James Humphreys, Otto Kegel. and Louis Solomon
for reading the manuscript and making numerous excellent suggestions.
We also derived considerable benefit from Charles Curtis’s lectures on
root systems and Chevalley groups.

s

July 1970 C.T,B. anp L.C.G.
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c/tﬁyater 7
PRELIMINARIES

774 LINEAR ALGEBRA

We assume that the reader is familiar with the contents of a
standard course in linear algebra, including finite-dimensional vector
spaces, subspaces, linear transformations and matrices, determinants,
eigenvalues, bilinear and quadratic forms, positive definiteness, inner
product spaces, and orthogonal linear transformations. Accounts of these
topics may be found in most linear algebra books.(e.g., [14] or [21]).
Throughout the book V' will denote a real Euclidean vector space, i.e., a
finite-dimensional inner product space over the real field #. Partly in
order to establish notation we list some of the properties of V that are of
importance for the ensuing discussion.

If X and Y are subsets of V such that (x, y) = 0 for all xe X and all
ye Y, we shall say that X and Y are orthogonal, or perpendicular, and
write X L Y. If X < V, the orthogonal complement of X, which is the sub-
space of V consisting of all x e V' such that x L X, will be denoted by X*.
If W is a subspace of ¥, then W** = Wand V= W@ wt.

If {X,,...,X,} is a basis for V, let ¥; be the subspace spanned by
{Xy0 oo X gy Xix1s e+ Xp) » €XCluding x;. IfQ # y;€ Vi, then (x;, ) =0
for all j # i, but (x;,y;) # 0, for otherwise y;€ y+ = 0. Dividing y; by
(x;, y;), if necessary, we may assume that (x;, y;) = 1, thereby making y;
unique since dim(¥}) = 1. Observe that if Z_, A,y; = 0 with 4, € Z, then

0 = (x;,0) = (x5, B Ay = T Al ) = 4

for all j, and s0 {y;,.... Va) is linearly independent. Thus {y,.... Vapisa

1



2 : Finite Reflection Groups

basis, called the dual basis of X x,} . It is the unique basis with the
property that v

- 1 ifi = j,
Bl = = {0 ifi # .

The space of all n-tuples (column vectors) of real numbers will be
denoted by #". Since there is seldom ary chance of confusion we shall often
write the elements of #" as row vectors (4,,..., 4,) for the sake of typo-
graphical convenience. The usual basis vectors along the positive co-
ordinate axes in 2" will be deno:cd by

ey = (1,0, .,0), e, =(0,1,0, ..,0),
etc. The space Z£” is an inner product space, with
((;'1 yis8ny ;'n)s (,“l g #n)) - ZT= l;"iui'

.
If V is any real Euclidean vector space, then it is a consequence of the
Gram-Schmidt theorem ([14], p. 108) that ‘there is an inner product
preserving isomorphism from V onto 2", where n = dim V. Thus when it is
convenient we shall lose no generality if we assume that V = #".

The length \/&—x) of a vector xe V will be denoted by |x|. If
x, y € V, then the distance between them, denoted by d(x, y), is de‘ined to be -
{lx — yl. For a fixed vector x, & V and real number ¢ > 0 the set

{xeV:dx, xy) = ¢}
is called the sphere of radius ¢ centered at x,, and the set
{xeV dx, xy) <'¢}

is called the (open) ball of radius ¢ centered at x,,.

A subset U of V is called open if and only if given any x € U there is
some ¢ > 0 for which the ball of radius ¢ centered at x lies entirely within
U. The conditions of the definition are vacuously satisfied by the empty
set (J,s0 & is open by default. Note that finite intersections and arbitrary
unions of open sets are open. A subset D of V is calied closed if and only if
its complement ¥ \ D is open, so finite unions and arbitrary intersections
of closed sets are closed. The intersection of all closed sets containing a set
X is called the closure of X and is denoted by X . The interior X° of X is
the union of all open subsets of X. The boundary of X is defined to be
X7 N\ X" For example, the sphere of radius & centered at x, is the boun-
dary of the ball with the same radius and center.

If X is a fixed subset of V and Y < X, then Y is called relatively open
in X if and only if ¥ = X 1 U for some open subset U of V. Likewises




Preliminaries : 3

.

Y is refatively closed in ¥ ifand only if Y = X 1 D for some closed subset
D of V. and the (relative) closure of Y in X is the intersection of X with
the closure Y~ of Y in V. A subset X of V' is connect- »d if and only if it is not
the disjoint union of two nonemipty relatively open subsets. At the oppo-
site extreme X is discrete if and only if every point of X is a relatively
open set.

If dim V = n, then a hyperplane in’ V is an (n — 1)- dimensional
subspacv A line in V is any translate of a one-dimensional subspace.
Thus a line is a subset of the form {x + iy:4ie 2}, where x and y are
fixed vectors with y # 0. The line segment [xy] between two vectors x
and y of V is the set 1

{x+Ay—x):0<i<1}

Note that if x # y, then [xy] is the smallest connected subset of the line
{x + Ay — x): 1€ R}

that contains x and y. A subset X of V is called convex if and only if the
line segment [xy] lies wholly within X for all pomts xand y of X. Observe
that a convex set is connected.

A transformation of V is undersiood to be a linear transformation.
The group of all vsthogonal transformations of V' will be denoted by
O(V). If TeO(V) then det T = +1, and if a (complex) number A is an
eigenvalue of Ttiien [A| = 1.If Te O(V)anddet T = 1, then T will be called
a rotation. .

The ring of integers will be denoted by Z.

GROUP THEORY

We shall assume that the reader is familiar with the following notions
from elementary group theory: subgroup, coset, order, index, homo-
morphism, kernel, normal subgroup, isomorphism, and direct product.
A discussion may be found in any book on group theory or almost any
book on abstract algebra (e.g., [20], [1], or [23]).

If & is a set, the cardinality of & will be denoted by |.#|. In particular,
the order of a group ¥ is |%). If & is a subset of a group &, then (&) will
denote the subgroup of 4 generated by <. If # isa subgroup of & we write
H < % and [¢ : #] will denot= the index of # in %.

A permutation of a sec & is a 1-1 function from ¥ onto % The set
P(&)ofall permutatlons of 9’ is a group under the operation of composi-
tion of functions; ie., (fg)(x) = f(g(X)), all xe & If ¥ = {1,2,....n},
then the group #(¥) is called the symmetric group-en n letters and is
denoted by %. We shall assume known the elementary properties or .



4 Finite Reflection Groups

(see [23], pp. 64-68). In particular, %, has a subgroup of index 2, the alter-
nating group on n letters, consisting of all the even permutations in .

If & is a set, then a group ¥ is said to be (represented as) a permutation
group on % if and only if there is a homomorphism ¢ from ¥ to 2(¥).
If @ is an isomorphism into 2(.¥), then ¥ is said to be represented faithfully
or to be a faithful permutation group on . Note that if % is faithful and .’
is finite, then % is isomorphic with a subgroup of .%,, and in particular ¢
is finite. :

If 4 is a permutation group on %, we shall write simply Tx rather than
(¢T)x forall Te %, x € & If x € ¥, then the subset # of %, consisting of all
Te % for which Tx = x, is a subgroup called the stabilizer of x, denoted
by Stab(x). The subset of & consisting of all Tx, as T ranges over ¥, is
called the orbit of x, denoted by Orb(x). If Orb(x) = . for each xe ./,
then % is said to be transitive on &,

Proposition 1.2.1
If % is a permutation group on a set . and x € ./, then [% : Stab(x)] =
|Orb(x)|.

Proof .

Set # = Stab(x). If R, Te % and R¥ = T #, then'T 'Re #, or
T 'Rx = x:s0 Rx = Tx. Thus (T .#) = Tx defines a mapping 6 from
the set of left cosets of # onto the orbit of x. If Rx = Tx,then T~ 'Re .#.
and R# = T # Thus 6 is also 1-1 and the proposition is proved.

s L e



c/mpter 2

FINITE GROUPS IN TWO
AND THREE DIMENSIONS

ORTHOGONAL TRANSFORMA TIONS IN TWO

DIMENSIONS
If Te O(#?), then T is completely determined by its action on the

basis vectors e; = (1,0)and e, = (0, 1). If Te, = (1, v). then p? + v? =1
and Te, = +(—v, u), since T preserves length and orthogonality. Choose

0.0 < 0 < 2m, such that cos § = u and sin RS
If Te, = (— v, p), then T'is represented by the matrix

R cos) —sin0
=1 alighEGdsin g ccos b
and it is clear that T is a counterclockwise rotation of the plane about the
origin through the angle 6 (see Figure 2.1). Observe that
det T = yi + v? = cos? 0 + sin® 0 = L.
If Te, = (v, —p), then T'is represented by the matrix

B=|H v} | cosl sin 0
Zlv.—pu| | sin@segeso|

In this case observe that
det T= —cos?@ —sin’0 ="—1,

and that
S w2+ 2 0 =R
2 0 WA T Dty

2.0



6 : Finite Reflection Groups

e
sy e
/// \\ .
7 AN
/ X
/ \\
b1, F)/ \
7] y
: + z
| S ,'e
\\ \\\\ / 1
\ \77/<v, -
X 4
Ne e
2 gt

Figure 2.1

so that T? ='1. It is easy to verify (Exercise 2.1) that the vector x, =
(cos /2, sin 0/2) is an eigenvector having eigenvalue 1 for T, so that the
line I = {ix, : Ae &} is left pointwise fixed by T. Similarly, the vector
x, = (—sin 0/2,cos 6/2)is an eigenvector with eigenvalue - 1,and x, L x,
[see Figure 2.2(a)]. With respect to the basis {x,, x,} the transformation
T is represented by the matrix

1 0
e[t )

If x = 4;x; + A3x;,then Tx = 4,x, — 4,x;, and T sends x to its mirror

(a) (b)
Figure 2.2 s
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Finite Groups in Two and Three Dimensions 7

image with respect to the line [see Figure 2.2(b)]. The transformation T
is called the reflection through | or the reflection along x, . Observe that

b

Tx o X =1 2(XXr) x5
for all x e #%.

We have shown that every orthogonal transformation of #? is either
a rotation or a reflection. :

FINITE GROUPS IN TWO DIMENSIONS

Suppose that dim V' = 2 and that ¢ is a finite subgroup of (V). The
set of all rotations in % constitutes a subgroup # of 4. As was shown
in Section 2.1, each Te .# is a counterclockwise rotation of V through an
angle 6 = O(T) with 0 < 6 < 2n. If # # 1, choose Re # with R # 1,
for which O(R) is minimal. If T e .#, choose an integer m such that '

mO(R) < O(T) < (m + 1)6(R).

Then 0 < 6(T) — mB(R) < 6(R). But

T) — mO(R) = O(R™"T),
since R™™T is a counterclockwise rotation through angle 6(T) followed
by m clockwise rotations, each through angle 6(R). Since 6(R) was chosen
to be minimal, we must have (R""T) =0;s0 R""T =1 or T= R™
In otherwords, # = (R) isa cyclic group. It also follows that 6(R) = 2n/n,
where n = |#|. .

If 4 = #, we have shown that ¢ is a cyclic group of ocrder n,1in which
case % wili be denoted by %7 (the subscript calls attention to the fact that
dint Vi=2).

Suppose next that ¢ # #. and choose a reflection Se% Since
det (SR*) = det S = —1 for all integers k, the coset S# contains n = |#],
distinct reflections. If T e % is a reflection, then ;

det(ST) = (det S)(det T) = (=1)(=1) =1,

so STe .# ; hence Te S, since S~ ! = S. Thus # is a subgroup of index
2in% and if # = (R),asabove, then

G =R S>=[1R, ... 6 RS SR LS
and|4| = 2n. Since RS isa reflection, we have (RS)?> = 1,or RS = SR ™! ="
SR™" !, completely determining the multiplication in % The group ¥ is
called the dihedral group of order 2n, and it will be denoted by #7. We
have proved

Theorem 2.2.1
If dim V = 2 and ¥ is a finite subgroup of ¢(V), then ¥ is either a
cyclic group %% or a dihedral group #5,n = 1,2,3,....
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If we set T = RS in the dihedral group A5 =<S,R), then T is a
reflection, since det T = —1. Since TS = RS? = R, it is clear that
(8. T) = A%, so #% is generated by reflections. If we suppose that the
orthonormal basis {x,, x,} of eigenvectors of S discussed in Section 2.1
coincides with the usual basis {e,,e,} in #% then we may assume that
Sand R are represented by the matrices

i 0 _ | cos2n/n  —sin2m/n
. [O - 1] i %5 l:sin 2n/n cos 27t/n]'
respectively. Thus T is represented by the matrix

cos 271t/n sin 27(/11]

GOoR4R [sin 2n/n - —cos 2n/n

so T'isa reflection through a line / inclined at an angle of /n to the positive
x-axis. Let us use these ideas to give a geometrical interpretation of the
group 45,

Denote by F the open wedge-shaped region in the first quadrant
bounded by the x-axis and the line /. The x-axis is a reflecting line for the
transformation S, and [ is a reflecting line for the transformation T.
The 2n congruent regions in the plane obtained by rotating the region F
through successive multiples of 7/n can be labeled with thé elements of
A as follows : Foreach U € %', designate by U the region U(F) obtained
by applying U to all points of the region F.

The procedure is illustrated in Figure 2.3 for the case n = 4. If two
plane mirrors are set facing one another along the reflecting lines for S

ST

TSTS = STST

Figure 2.3

Pl
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%

e
Rx 2 X

Fy

€y

Figure 2.4

and T, with their common edge perpendicular to the plane at the origin,
then the other lines may be seen in the mirrors as edges of virtual mirrors.
If an object is placed between the mirrors in the region F, then reflections
of the object can be seen in the seven images of F. This illustrates the
principle of the kaleidoscope and shows a connection between the kaleido-
scope and the dihedral groups. :

Observe that the region F is open, that no point of F is mapped to any
other point of F by any nonidentity element U of #7, and that the union
of the closures (UF) ™, U € #7,isall of #2. A region F with these properties
will be called a fundamental region for the group #75. Fundamental regions
will be discussed more fully in Chapter 3 :

If some nonzero vector x and its image Rx under the action of the
rotation R through minimal angle O(R) are joined by a line segment,
then that line segment together with its images under all transformations
in 4% bound a regular n-gon X. The subgroup €% of rotations in A 1S
the group of all rotations that leave the n-gon invariant, and #% itself
is the group of all orthogonal transformations that leave X invariant.
In the case n = 4, 6% and # 3 are the rotation group and the full orthog-
onal group under which the square is invariant [see Figure 2.4, where
x = (1, 1)]. The relatively open region Fy=FN X is a fundamental
region in the square X for the group # 3, in the sense discussed above.

ORTHOGONAL TRANSFORMATIONS IN THREE
DIMENSIONS

We assume throughout this section that dimV =3



