e T A AN, 0 o e s oy, S M 1‘{: M
v i ; s

i a

: i - g e R A s
| = b g Padbn (e
b i ke R ik % Toul] e
S : b - ey W S ar i)
3 - b W TS T & e o AT g
it j PR Tl $Ug0 Rl RN
: TR BDR",
| ' | 'l 1 B
&] b ARET NE e GV Sl R A
! 3 9 P G b ; i i
i ; ¢ VW d A PR
i ; i i B o G 3
‘ﬁr’* / i)
i g

5 N

HOME COMPUTERS:
2" Questions & Answers

Volume 2: Software
Rich Didday

ofle °
dilithium
P.O. Box 92,
PRESS Forest Grove, Oregon 97116

v

The technical information, statements about specific products,
and descriptions of specific computer languages in this book are
based on fact and are believed to be accurate. The characters
are fictional, and are not intended to portray any real persons,
living or dead. Some fragments of conversations are based on
real conversations.

HOME COMPUTERS: 2 QUESTIONS AND ANSWERS
Volume 2: Software

Rich Didday

ISBN 0-918398-01-0

“Copyright 1977 by dilithium Press, P.O. Box 92, Forest Grove,
Oregon 97116

All rights reserved; no part of this book may be reproduced
in any form or by any means without permission in writing from
the publisher, with the following two exceptions: any material,
including computer programs, may be copied or transcribed for
the non-profit use of the purchaser; and material (not to exceed
300 words and one figure) may be quoted in published reviews
of this book.

Library of Congress Cataloging in Publication Data

Didday, Richard L
Home computers.

Bibliography: p.

Includes index.

CONTENTS: v. 1. Hardware.—v. 2. Software.

1. Microcomputers—Miscellanea. |. Title.
TK7885.4.D53 001.6'4'04 77-9285
ISBN 0-918398-00-2 (v. 1)

ISBN 0-918398-01-0 (v. 2)

PRINTED IN THE UNITED STATES OF AMERICA

v

PREFACE

What's in this book

This is the second volume of the two-volume set 2'° Questions
and Answers About Home Computers. This book has two main
purposes. First, it's intended to give you a real feeling for what
it's like to write programs for home computers. Second, it's
intended to give people who come with an interest, but no
specialized knowledge, a general background in programming (in
general) and in programming microcomputers (in specific).
Enough of a background so that you’ll have no trouble under-
standing articles about advanced programming projects and soft-
ware techniques in the computer hobbyist magazines, ads de-
scribing software products, and people who do have specialized
software knowledge. There is no attempt to push specific products,
nor is there an attempt to cover advanced, esoteric software
techniques. The whole idea is to get you to the point where you
can make your own, informed decisions about what software
products you want, and what projects to attempt.

A glance at the Table of Contents and a few minutes of flipping
through the book will show you how these purposes are accom-
plished. The material is expressed in the form of a dialog. One
participant (A) has a substantial background in computing and
home computing, the other (Q) is a bright, interested newcomer.
In addition, an Editor adds occasional fine points and clarifications.
Diagrams, Tables, and Appendices are used to provide additional
information in a compact form.

Although there is a definite structure to the whole book, so
that by reading from start to finish, you will find an orderly
progression of material (the organization of specific microproces-
sors — programming in machine language — programming in
assembly language — programming in Basic — generalizations
about programming — things you can and can’t expect to do

Vi

with a home computer), the book is also designed to make it
easy to skip around, covering topics of special interest to you
(see Figure 0). Regardless of your specific background, I'm sure
you'll find many topics of interest, simply because computing
itself is such a rich, diverse, fascinating, lively activity.

And how | came to write it

I've been interested in computing for a long time (I wrote my
first programs in 1964, soldered my first digital logic chips
together in 1965), and when affordable computers became avail-
able, | jumped at the opportunity to have my own system, free
from the constraints imposed by the companies and universities
whose computers | had been using. As | went around talking
to people, dropping into newly opened computer stores, going
to conventions, | was struck by the high proportion of people
| met who had substantial backgrounds in electronics and com-
puter hardware — there seemed to be relatively few newcomers.
“Why is that?’’, | wondered. Further investigation revealed what
should have been obvious. Although dealing with computers is
inherently no more difficult than working on your car, and although
programming in a language like Basic is easily and commonly
taught to children, the mystique and special jargon built up around
computers serves as a barrier. People can’t be expected to take
a deep interest in computing if they can’t really understand what's
being said and if they have no way of knowing what they're in
for.

My first plan was to produce a short book of answers to questions
like “What is a buffer?””, “What is an array?’’, “"What is the
difference between machine and assembly language?’’, ""What
is flip-flop?”’, etc. That failed because the terms, although each
one is simple in itself, are densely interconnected and make little
sense out of context. The solution was to write a more extensive
book consisting of coherent conversations involving the terms to
be explained. But now another problem arose. If enough material
was included to make the book of real use to people with wide
differences in background, that is, if it was to cover both the
hardware and the programming aspects of home computing, the
cost to the purchaser would be objectionably high. Fortunately,
the material lent itself quite naturally to a division in two, so the
person who is interested mainly in hardware aspects of home
computing as well as the person who is interested mainly in
programming can each find the material they want in a moderately
priced book (Vol. 1 and Vol. 2, respectively).

Overall, it turned out to be much more work than |'d bargained

Vil

for, but | feel it will be well worth the effort if it succeeds in
helping people over the initial barriers, enabling them to discover
the joys and excitements of computing.

Thanks to . . .

Many, many thanks to “'Nick’’ Nichparenko, Dan Ross, Dennie
Van Tassel, John Craig, the Byte Shop of Santa Cruz, Merl Miller,
Rob Walker of Intel, Margaret Kinstler, Raymond Langsford, the
late Walter Orvedahl, Rex Page, the lady in Albuquerque, and
William Makepeace Thackeray.

December 19, 1976
Santa Cruz, California
Rich Didday

EDITOR'S
INTRODUCTION

This book and the companion volume 2'° Questions and An-
swers About Home Computers:
Vol. 1 represent a heavily edited transcription of nine days of
conversation focusing on home/hobby computing. Among the
steps taken to create a useful book from the raw recordings are
these:

—each Day’s conversation has been grouped into sections, and
each section given a title.

—preseﬂ*table figures have been drawn from the rough sketches
provided by the participants.

—the material has been cross-referenced to aid the reader in
quickly finding related material.

—editorial insertions (denoted by [square brackets]) have been
made to explain fine points or to correct potentially misleading
statements.

—an extensive set of Appendices, a Bibliography, and an Index
have been provided.

—much of the conversation has been condensed. Some has been
converted into tabular form. Portions of questionable relevance
have been deleted. In other cases, material representing
qualifications of previous statements has been made into
parenthetical phrases and inserted at the appropriate points.

—a numbering scheme has been placed on the material. Ques-
tions are numbered only where either the question or the
answer (or both) add substantively to the discussion. Unnum-
bered material has been retained where necessary for continu-
ity or where it gives an indication of the nature of the interaction
between the participants.

The conversations divided into two self-sufficient volumes very

naturally, with a few minor exceptions. The switch from a concern

X

with hardware issues to a concentration on software occurs very
gradually during Day 5, so gradually that there seems to be no
single point at which the change can be said to occur. For this
reason, the first three sections of Day 5 have been included in
both volumes. In addition, some material, notably the discussion
of binary, octal, and hexadecimal number systems, is needed in
both volumes. Hence, a summary of the relevant information from
the First Five Days has been included in the Last Five Days. In
addition, there is a duplication of some of the Appendices, the
Bibliography, and the Index. This last duplication is intended to
aid those readers who possess both volumes.

The Editor

Xl

TABLE OF
CONTENTS

Preface
Editor’s Introduction
Summary of relevant information from Vol. 1

Day 5: Some Specific Microprocessors
The organization of specific microprocessors. Q612
Instructions that acess memory Q639
What are stacks? Q656
Day 6: What's It Really Like to Program in Machine and
Assembly Languages?
Languages. Q668
Programming through front panel switches. . Q671
Actually entering the program Q691
Using assembly language Q706

Every major program has bugs in it (really). . Q715
Coding the program in assembly language . . Q721

Multiplication Q751
Subroutines. Q762
Finishing the multiplication subroutine Q767
Day 8: What's It Like to Program in Basic?
And still counting Q793
Does using Basic limit what you can do? . .. Q813
Computer gamesvoo ... Q819
Drag race Q827
What's an array? Q840
Into the heart of the drag race program Q842
Random numbers Q857
The finished program. Q861
Day 9: Generalities About Programming
What's the best language?. Q862
Interpreters versus compilers Q872
Basic-variations on a theme Q875

Xl

Day 10:

Appendices

What Can You Really Do With It, and What Can't
You Do With It?

WellZ o T e e e e e Q904
Control Q907
Communication Q918
Computation Q926
Simulation. Q932
Organization Q942
Recreation. Q956
Different approaches to the applications Q961
Some things computers can'tdo Q964
Are computers like brains?. Q1002
The Swami speaks. Q1010
Powers

Halting Problem
Table of Contents — Volume 1
Proposed Standards for ANSI Minimal Basic

ASCII| Character Set
6800 Instruction Set
8080 Instruction Set

Bibliography

Index

SUMMARY OF
RELEVANT

INFORMATION
FROM VOL. 1

The conceptual computer

There are two main aspects of computer systems: hard-
ware and software. The term hardware refers to those
parts of the computer system that you can touch — the
integrated circuit components, the wires, switches, lights,
keyboard, power supply, the chassis the subassemblies
are mounted in, so forth. Software refers to entities that
exist as patterns, i.e. programs, data, stored values.

All digital computers have a hardware organization that
fits the conceptual framework shown in Figure E1. Pro-
grams, data, and temporary values are stored in memory.
Memory is organized as a number of locations, each of
which has a unique address. On most microcomputers,
each location in memory stores one 8-bit binary pattern
(a byte), and each address is a 16-bit binary value.

The controller (alternate names: processor, microproces-
sor, central processing unit, cpu) takes instructions (i.e.
statements in a program) from memory and carries them
out. Each command in a microprocessor’s instruction set
(see Appendices for the 8080 and 6800 instruction sets)
causes the controller to take a specific action (e.g. store
a value in a specific place in memory, get a value from
a specific place in memory, perform a test on a value and
if the test succeeds take the next instruction from some
specific place in memory, halt, send a value to a specific
input/output device, etc.).

c ONTKOLLEKJ \
/r S
i

USER_

Frgure E1 The Conceptual/ Computer

2'* QUESTIONS & ANSWERS VOL. 2: SOFTWARE

The input/output (i/ o) devices are used to communicate
values from and to the computer. Typical i/o devices are
front panel switches and lights, terminals (such as Tele-
types, keyboards and TV interfaces, video terminals, etc.),
and external storage devices (such as cassette tape record-
ers, discs, etc.).

Figure E2 is an elaboration of Figure E1 and shows how
the parts of the conceptual computer are tied together in
most microcomputer systems.

controller pemory:

~ ==
|
l
|
|
L
e
!
|
7
|
[
>
L

contro/ bus

EOECEVICI .

/o _1/o |
interface interface |

0 I
Hell |

Fgure £2 The various component parts
communicate 1hrough busses

Two different types of memory (ROM and RAM) are shown
in the memory block. ROM is random access read-only
memory; RAM is random access read-write memory.
(Random access means that any location in memory can
be accessed in the same amount of time: an example of
a memory device which is not random access is cassette
tape in which values are accessed sequentially.)
The controller consists of a microprocessor chip plus any
necessary support chips (e.g. circuitry to provide synchro-
nization signals, devices which serve to connect the micro-
processor to other parts of the conceptual computer, etc.).
Most microprocessors (8080, 8085, 6800, Z-80, 6502,
etc.) are general purpose, byte-oriented, variable in-
struction length, sequential machines.
general purpose: intended for use in a wide range of
applications; able to compute anything that is
computable (see Q982).

SUMMARY OF RELEVANT INFORMATION — VOL. 1 3

byte-oriented: the basic unit of storage is one byte (8
binary digits); basic machine commands are one
byte long; memory is accessed one byte at a time.

variable instruction length: although each basic machine
command is one byte long, a complete instruction
may require additional information, thus instruc-
tions can be one, two, or three bytes in length.
For instances, a Jump instruction is (typically)
three bytes long — one byte to specify the com-
mand Jump and two additional bytes to specify
a (16-bit) memory address (i.e. two additional
bytes which specify where to Jump to).

sequential: a sequential computer carries out one instruc-
tion at a time. Computer systems which contain
more than one processor and can therefore carry
out more than one instruction at a time are said
to be capable of parallel processing.

The three major components of the computer shown in

Figure E2 are interconnected by groups of wires called

busses. The address bus communicates 16-bit values

from the controller to memory and i/o. The data bus
communicates 8-bit values from any component to the
others. The control bus is used to communicate control
and synchronization signals among the components. For
example, if the controller is carrying out an instruction
which says to store a value in a specific spot in memory,
the busses are used in the following way: The controller
places the address of the desired memory location on the
address bus. All devices on the address bus receive the
signal, and it is up to circuitry on each device to determine
if it should respond. Thus, only the block of memory which
contains the specified address will allow the signals on
the other busses to affect it. The controller places the value
which is to be stored on the data bus and it too is
communicated to all devices on the busses, including, of
course, the block of memory previously mentioned. In
addition, the controller places a signal on the control bus
which specifies that a memory write (as opposed to
memory read) operation is to take place, and this causes
the specified memory location to store the value appearing
on the data bus in the memory location whose address
appears on the address bus. Since (most) microprocessors
use synchronous busses, no further communication is
necessary (i.e. in an asynchronous bus, the controller
would wait until it received a signal informing it that the
memory operation had taken place). (For a description of

4 2'° QUESTIONS & ANSWERS VOL. 2: SOFTWARE

what happens if the memory used in the system responds
so slowly that the controller can demand another memory
operation before the first is completed, see Q97-99 in Vol.

1)

Number Systems

There are four number systems in common use among
people who program in machine and assembly language
— decimal, binary, octal, and hexadecimal. All are
positional number systems, which means that the position
of a symbol in the number determines its value (the "3"
in 13 means three, but the 3"’ in 327 means three
hundred).

In the decimal number system (base 10), there are 10
different symbols,

0123456789

and each column in a number is associated with a different
power of 10.
In binary (base 2), there are 2 different symbols,

01

and each column in a number is associated with a different
power of 2.
In octal (base 8), there are 8 different symbols,

01234567

and each column is associated with a different power of
8.
In hexadecimal (base 16), there are 16 different symbols

0123456789ABCDEF

and each column is associated with a power of 16.
Binary is used for the obvious reason — computers are
built of two-state elements. Octal and hexadecimal are
used because they provide a compact (hence easily re-
memberable) representation for binary values, and the
conversion to and from binary to octal or hexadecimal is
extremely simple.

The notation y, indicates that the string of digit symbols
y represents a number expressed in base x. Thus 11,
means '‘the binary value 117 (11, =3]0).

SUMMARY OF RELEVANT INFORMATION — VOL. 1 5

A most significant digit 279 Jeast significant Jigit (b/F)

/eas * ‘{jﬂl'fl.cmf d/j/f/é/'f)
\ ;‘ -

/.
. v
ofyp/cva,fe}f/ o1 1 o, 0 0]
: 7 6 5 4 3 2 1 O <—4/F positions
A g <Nl

high-order /low-order
bits bits

Figure E3 MNotaqriorn

Conversions

binary to decimal

The rightmost digit of a binary number (also called the
least significant digit) tells how many (i.e. either O or
1) 2°'s there are in the number. The next digit to the
left tells how many 2''s there are. Thus, to convert a
binary value to decimal, start with the rightmost digit. If
it's a 1, write down 1,, (=2°, otherwise go to the next
digit to the left. If the second digit from the right is a
1, write down 2 (=2'), otherwise go on. If the third digit
from the right is a 1, write down 4 (=2?), otherwise go
on. After repeating this process until all digits in the binary
number have been dealt with, add up the numbers you
wrote down — their sum is the equivalent decimal value.
(For powers of 2, 8, and 16 see Appendix — Powers.)

x
L] v r\ v
/'
/m //‘V/',V/
Progg,
APPSS
from 2°
31‘5‘cg/umn
4 L from Zl

36,0 column

octal to decimal, hexadecimal to decimal

The procedures for converting from octal or hexadecimal
to decimal are the same as for binary except that the value
in each digit position is multiplied by the corresponding
power of 8 (for octal) or 16 for (hexadecimal) instead of
2.

2'° QUESTIONS & ANSWERS VOL. 2: SOFTWARE

828'8° 16%16'16°
123, 140,,

3x1 = 3 Ox1

2x8 =16 4x16 =64
1x64 =64 1x256=256
83,, 320,

decimal to binary

Repeatedly divide the decimal value by 2, writing down
the remainders from right to left as you go, stopping when
you are left with zero as the next dividend.

srert with 19,

2/9€ =9 remainder 1

2/9%= ¢ remarinder 1

2/4”=2 remqinder o
_/l‘/
2/2 ‘=/1, remaqsrnder O

2/1 €= o remqinder 1

O /eft, so Jone.

v
m @ B W @,

decimal to octal, decimal to hexadecimal
Follow the same procedure as for converting decimal to
binary, but repeatedly divide by 8 or 16.

Srart with /910

Converting to octql, —* >8 / /19 m3
So keep d, wd//jq —

&8 812 4= o remqinder 2

. e
0, so Jone. \[l

&,

binary to octal

Each octal digit corresponds (exactly) to three binary digits.
Starting from the right, mark off each set of three binary
digits, convert each set (in place) to the equivalent octal
digit.

SUMMARY OF RELEVANT INFORMATION — VOL. 1 7

3-bit binary value equivalent octal digit
000
001
010
011
100
101
110
111
octal to binary
Replace each octal digit (in place) by the equivalent three
digit binary value.

NooaprhwWN-—=0

Convert each octal digit Merk off in 3's
@w/ub starting from Me r:‘gh‘—)
octal S 3 / blﬁdf'y 101 OI IL
7o / l & 1o 1 j /
A A
binary 101 ofl ool, octael a

binary to hexadecimal
Each octal digit corresponds to (exactly) four binary digits.
Starting from the right, mark off each set of four binary
digits, convert each (in place) to the equivalent hexadeci-
mal digit:
4-bit binary value equivalent hexadeci-
mal digit
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
hexadecimal to binary
Replace each hexadecimal digit (in place) by the equiva-
lent four digit binary value.

TMOOTP>POONOORAWN—=0O

