TRW-S5-73-00

CHARACTERISTICS OF SOFTWARE, QUALITY

DECEMBER' 1973

%

W
4
&
%
L

TRW SOFTWARE SERIES

:

8465320

TRW-SS-73-09

AR

E8466320

N

CHARACTERISTICS OF SOFTWARE QUALITY

Prepared By

B.W. Boehm
J.R. Brown
H. Kaspar
M. Lipow
G.J. MacLeod
M.J. Merritt

28 December 1973

B 3 o - ™
& 1o ¥ 8 45

‘r w SYSTEMS ENGINEERING AND INTEGRATION DIVISION
svsrems orovw ONE SPACE PARK, REDONDO BEACH, CALIFORNIA 90278

ABSTRACT .

This is the report of a small study by TRW for the National Bureau of
Standards’ Institute for Computer Sciences and Technology. The objectives of this
study were to identify a set of characteristics of quality software and, for each
characteristic, to define a metric such that:

1) Given an arbitrary program, the metric provides a quantitative measure of
the degree to which the program has the associated characteristic, and

2) Overall software quality can be defined as some function of the values of
the metrics.

Although “software” can have many components such as functional
specifications, test plans, and data collection guidelines, this study concentrates on
metrics which are applied to FORTRAN source programs (which may include
extensive use of comment cards). However, many of the metrics in the report can
be adapted straightforwardly to other software components.

The major results of the study are the following:

1) An assessment of the limitations of purely quantitative measures of
software quality.

2) A definitive hierarchy of characteristics of software quality, the
“Characteristics Tree”.

3) An extensive list of anomaly-detecting metrics, thoroughly classified with
respect to the characteristics of software quality and evaluated with respect
to a set of ““Characteristics of quality metrics.”

4) A detailed algorithm and guidelines for using metrics to perform assessment
of program header comments.

5) A discussion and cost-benefit analysis of the potential impact of using
anomaly-detecting metrics during the software process.

6) An annotated bibliography of relevant literature.

The study’s most important contribution though, has been to provide, for the
first time, a clear, well-defined framework for assessing the often slippery issues
associated with software quality, via the consistent and mutually supportive sets of
definitions, distinctions, guidelines, and experience summaries cited above. This
framework is certainly not complete, but it has been brought to a point sufficient to
support the evaluation of the relative cost-effectiveness of prospective code-analysis
tools presented in this report, and to serve as a viable basis for future refinements
and extensions.

This is a reprint of TRW document 25201 -6001-RU-00
prepared for the National Bureau of Standards under
contract number 3-36012

Printed in U.S.A.

25201-6001-RU-00
Page Al11-5

Table A-2. Two Subroutines from IBM Scientific
Subroutine Package

Subroutine PNORM Subroutine PDIV
c PNOR 10 c
é ------agou-:--o-c.oooc------oc-.-----t..--------oo-------.ou-----':x: :g E ."..--....-...‘.-.‘...-.-.-..‘...'.'..-......-...-..........‘.....:g:: ;g
s PNOR &0 PDIV 30
c SUBROUT INE PNORM PNOR 50 c SUBROUT INE POIV POIV 40
§ o R E e oty i
g NORMALIZE COEFFICIENT VECTOR OF A POLYNOWIAL o ool S ANCTOE N POLTADNTAL BT WNOVRER o
5 - peoR 199 c USAGE oIV o8
£ CALL PNORM(Xs IDIRX,EPS) PhOR L10 ¢ CALL POIV(PoIOIMP, X o [JINX, Y, (DN +TOL, [ER) POIV 100
PARAMETERS PNDR 20 PDIV 110
2 °§s§.l"[u! 3:cron OF ORIGINAL COEFFICIENTS, ORDERED FROM PNOR 130 c DESCRIPTION OF PARAMETERS PDIV 120
c SMALLEST TO LARGEST POWER. IT REMAINS UNCHANGED PNOR 1640 c 4 - RESULTANT VECTIR OF INTEGRAL PART POIV 130
C [OIMX - DIMENSION OF X. [T IS REPLACED BY FINAL DIMENSION PNOR 150 c 10IMP - DINENSION OF P PDIV 140
4 EPS - TOLERANCE BELOM WHICH CQEFFICIENT IS ELIMINATED PNOR 160 c X - YECTOR OF COEFFICIENTS FOR DIVIDEND POLYNOMIAL, POIV 150
PNOR 170 c ORDERED FROM SMALLEST TO LARGEST POWER. IV IS PDIV 160 i
E REMARKS PNOR 180 g p— ;f:;:gig.‘l:”RE%ltMDEl AFTER DIVISION. FD:V l;g
/ S ™ PS, RESULT IS A ZERD PNOR 190 - 2 POIV 1
E LSL::;N?‘:EF::%ET;EN:ES :EJ?‘vZI.::sEIS;EMms INTACT PNOR 200 c Y - YECTIR OF COEFFICIENTS FOR DIVISOR POLYNOMIAL, POLY 190
c o, corm — SRrenSion g oL E5" 10 Laseesy rouel raby i
PNOR 220 - v
c Sushay MR JBR JRNSTION SUBPROGAANS REQUIRED PNOR 230 c TOL - TOLERANCE VALUE BELOW WHICH COEFFICIENTS ARE POIY 220
¢ PNOR 240 c ELIMINATED DURING NORMALIZATION polv 230
E METHOO PNOR 250 g 1ER - ERROR CODE. O IS NORMAL, * IS FOR ZERO DIVISOR Pn:v 240
c DIMENSION OF VECTOR X IS REDUCED 8Y ONE FOR EACH TRAILING PNOR 260 POIV 250
oR 270 c REMARKS ; POIV 260
c COEFFICIENT WITH AN ABSOLUTE VALUE LESS THAN OR EQUAL 10 EPS::O‘ £ £ ARKS CHETROER: K NEPLACES % LUV
: e s R E s eee ssanenniee PROR 290 < THE DIVISOR ¥ REMAINS UNCHANGED. POIV 282
c teescassscssasnsssecesesassassssasasens PHOR $00 c IF DIMENSION OF Y EXCEEDS OIMENSION OF X, IDIMP IS SeT TO POIV 290
% SUBROUT INE PNORM(X, IDIMX,EPS) PNOR 310 E ZERD AND CALCULATION IS BYPASSED ru:v ;og
PNOR 320 POIV 31
c DIMENSION X1} PNOR 330 C SUBROUTINES AMD FUNCTION SUSPROGRANS REQUIRED POIV 320
L IFCIDINXD 4ee2 PHOR 342 g PNORR PDIV 320
2 IF(ABS(X(IDINX)I-EPS) 343¢4 PNOR 350 : ASTHOD :ulv :tg
3 toIMx=1DIMX-1 pNOR 360 . oIV 33
g i PNOR 370 ¢ POLYNOMIAL X IS OIVIDED B8Y POLYNOMIAL Y GIVING INTEGER PARY PDIV 360
PNOR 380 e P AND REMAINDER R SUCH THAT X = PeY + R, POIV 370
4 RETURN PROR 390 c DIVISOR ¥ AND REMATNDER VECTOR GET NORMALIZED. POIV 380
END c POIV 390
c eesssesnsestestases st ssssntesstsestsssssnsnsssna.cesssnnansscecsPOIY 400
c POIV 410
SUBROUT INE PDIV(P,IDIMP, X, [DINK, Y+ IDINY,TOL, [ER] PDIV 420
DIMENSION PL1)eXI1),¥(L) POIV 430
c PDIV 440
CALL PNORM (Y, [0IMY,TOL) POIV 450
[FCIOTMY) 50,50,10 POIV 463
10 IDIMP=IDIMX-1DIMY+]L POIV 470
IFLIDIMP) 20,30,60 POIV 480
c PDIV 490
c DEGREE OF DIVISOR WAS GREATER THAN DEGREE OF DIVIDEND POIV 500
c poOIV 510
20 [0InP=0 poIV 520
30 IER=0 POIV 530
40 RETURN POIV 540
POIV 550
¥ IS ZERDO POLYNOMIAN PDIV S60
c POIV 570
S0 1ERsl POIV 580
GO TO 40 POIV 590
c POIV 600
c START REDUCT ION POIV 510
c PDIV 620
60 10IMX=[DINY-1 POIV 630
1=101nP pOTY &40
70 Ti=1+1010nx POIV 65C
PUII=XI111/7YLIDINY) POIV 667
c POIV 670
c SUBTRACT WULTIPLE OF DIVISOR POIV 680
c ’ POIV 630
DO 80 K=1,101MX POIV TOO
Jak-1+1 POIV T10
X(J)=XUJI-PEI)OV(K) POIV 720
80 CONTINUE POIV 730
o T B POIV 740
IFLI) 90,90,70 pPOIV 750
[4 POLY 760
[NORMALI ZE REMAINDER POLYNOMIAL POIV T70
c POIV 780
9C CALL PNORM{X,IDIMX,TOL) POIV 790
GO TO 30 POIV 800

END POIV 810

annn ﬂ!!f\ﬂlﬁflﬂ‘ﬁlﬂf\flﬂlﬂf\r!ﬁl‘f‘f‘hcﬂf\ﬂlﬁf\ﬂl\f‘h!ﬁflﬂl‘f\ﬂl‘f\ﬂ?\f‘ﬂlﬂf‘ﬂ(\flﬂfﬁflﬂl\r\ﬂ!ﬁf\ﬂ(\f\ﬂl‘r\ﬂlﬂflﬂ!‘f!ﬂt\?‘ﬂ(\f\ﬂl\f‘ﬂlﬂf‘ﬂf\f\ﬂl‘f\ﬂlﬁflﬂr\flﬂr1ﬂ

[aNaXal

Anan

-

o

Table A-1.

25201-6001-RU-00

Page Al1-4

An Example Listing from IBM

Scientific Subroutines Package

KL®O 10

e e b s s N HEAE R SRS e s e wy e s s ve s saei b daase kLD 20
KLMO 30

SUBKNUT INE KOLMO KLMO 40
KLMO 50

PURPCSE KLMO 60
TESTS THE DIFFERENCE BETWEEN EMPIRICAL AND THFORETICAL KLMO 70
DISTFIRUTIONS USING THE KOLMOGOROV-SHIRNOYV TLST KLMD 80

KLKD 90

USACGE kLMD 190
CALL KNLMO{X Ny Z PPNR, [FCODsU+Sy IERD KLMO 110

KLMO 120

DESCFIFTINN OF PARAMETEKS KLMC 130

X - INPUT VECTOR DF N INDEPENDENYT CBSERVATIUNS. ON KLMG 140
RETURN FRCM KOLMO, X HAS BEEN SORTED InTO A KLMO 150

MONOTONIC NON-DECREASING SEQUENCE. KLMO 140

N - NUM3EF OF OBSEFVATIONS IN X KLKO 170

1 - QUTPUT VARIARLE CONTAIKING THE GREATEST VALUE WITH KLXO 180
RESPECT TN X OF SQRTIN)I®ZBS(FNIX)-FIX)) WHERE KLMO 190

FIX) IS A THECEETICAL DISTRIBUTION FUNCTION AND KLMO 200

FNUX] AN EMPIFICAL DISTPIBUTION FUNCTIODN. KLKO 210

PROB - DUTPUT VARIABLE CONTAINING THZI PROBAEILITY OF KLMD 220

THE STATISTIC BEING GREATER THAN OR EQUAL TO Z IF KLNO 230

THE HYPOTHESIS THAT X 1S FROM THE GENSITY UNDER KLHMO 240
CONS'DERATIGN IS TRUE. E.G.s PROB = 0,05 IMPLIES KL®O 250

YHAT ONE CAN REJECT THE NULL HYPOTHESIS THAT THE SET KLXD 260

X 1S FROM THE DENSITY UNDEK CONSIDERATION MITH 5 PER KLMO 270

CENT PROBABILITY OF BEING INCORRECT. PROB = 1. - KLMO 280

SMIRNILZ]). KLMO 290

JFCOG- & CODE DENOTING THE PARTICULAR THEORETICAL KLMO 300
PRORABILITY DISTRIBUTICN FUNCTION BEING CONSIDERED. KLKO 310

= L=-=F(X) IS THE NURMAL POF, KLMO 320

= 2--=F(X) 15 THE EXPONENTIAL PDF. KLMO 330

= 3-——=F({X) IS THE CAUCHY PDF. KLMO 340

= 4--=F(X) 1S THE UNIFORM PDF. KLMO 350

£ S—==F{X) 15 USER SUPPLIED. KLMO 360

u - WHEN IFCOD IS 1 OR 2, U 1S THE MEAN OF THE DENSITY KLKO 370
GIVEN ABUVE. KLMO 380

WHEN IFCOD 1S 3, U IS THE MEDIAN OF THE CAUCHY KLMO 390

DENSITY. KLMC <00

WHEN IFCOD IS &, U IS THE LEFT ENDPOINT DF THE KLKO 410

UNIFORM DENSITY. KLMO 420

WHEN IFCOD IS S, U IS USER SPECIFIED. KLKEO 430

- - WHEN IFCOD IS 1 DR 2, S IS VHE STANDARD DEVIATION OF KLMO 440
DENSITY GIVEN ABOVE, AND SHOULD BE POSITIVE. KLMO 450

WHEN IFCOD 1S 3, U - S SPECIFIES THE FIRST QUARTILE KLMO 460

GF THE CAUCHY DENSITY. S SHOULD BE ACh-ZERD. KLMD 470

IF TFCOD IS &, S 15 THE RIGHT ENDPCINT OF [HE UNIFORRKL®O &80

DENSITY. S SHOULD BE GPEATER THAN U. KLLMD 490

IF IFCON IS Sy, S 1S USER SPECIFIED. KLMO 500

1ER - ERROR INDICATOR WHICH IS NON-ZERO IF § VIODLATES ABCVEXKLMD 510
CONVENTIONS. ON RETURM NO TEST HAS REEN MADE. AND X KLKO 520

AND Y MAVE BEEN SORTED INTO MONOTONIC NON-DECREASING KLMO 530

SEQUENCES. [ER IS SET TO ZERO ON ENTRY TO KOLMO. KLMO 540

1ER 1S CURRENTLY SET TO ONE IF THE USER-SUPPLIED PDF KLMD 550

1S REQUESTED FOR TESTING. THIS SHOULD BE CHANGED KLMD 560

(SEE REMARKS) WHEN SOME PDF 1S SUPPLIED BY THE USER. KLMO 570

KLKO 580

REMARKS KLMO 590

N SHOULD BE GREATER THAN OR EQUAL TO 100. (SEE THE KLMO 600
KATHEMATICAL DESCRIPTION GIVEN FOR THE PRUGRAM SMIRN, KLMD 610
CONCEQNING ASYMPIOTIC FORMULAE) ALSO, PROBAEILITY LEVELS KLRO 620
DETEXIMINED BY THIS PROGRAM WILL NOV BE CORRECT IF THE KLMO 630

SAME SAMPLES ARE USED YD ESTIMATE PARAMETERS FOR VHE KLMO 640
CONTINJOUS DISTRIPUTIONS WHICH ARE USED IN THIS TEST. KLMD 650

(SEE THE MATHEMATICAL DESCRIPTION FOR THIS PROGRAM) KLHO 660

FUX) SHOULD BE A CONTINUNUS FUNCTION. KLMO 670

ANY USER SUPPLIED CUMULATIVE PROBABILITY DISTRIBUTION KLMO 680
FUNCTION SHOULD 9E CUOED BEGINNING WITH STATEMENT 26 BELOW, KLKO 690

AND 5HOULD RETURN TO STATERENT 7. KLKO TOG

XLMC 710

OOURLE PRECISION USAGE---1T IS DOUBTFUL THAT THE USER WILL KLMD 720

WISH TO PERFORM THIS TEST USING DOUBLE PRECISION ACCURACY. KLWO 730

1F ONE WISHES TO COMMUNICATE WITH KOLMO IN A OOUBLE KLMO T40
PRECISION PROGRAM, HE SHOULD CALL THE FORTRAN SUPPLIED KLMO 750
PROGRAM SNGLIX) PRICR TO CALLING KOLMO, AND CALL THE KLMD 760
FORTRAN SUPPLIED PRDGRAM CBLE(X) AFTER EXITING FRCM KOLMO. KLMO T70

(NOTE THAT SUBRCUTINE SMIRN DOES HAVE DOUBLE PRECISION KLMO T80
CAPABILITY AS SUPPLIED BY ThIS PACKAGE.) KLKO T90

KLMC 800

KLMO 810

SUBPOUTINES AND FUNCTION SUBPRGGRAMS REQUIPEC KLMO 820
SMIRN, NDTR, ANC ANY USER SUPPLIED SUBROUTINES REQUIRED. KLMO 830

KLMD 840

METHOD KLMO 850
FCR REFERENCF, SEE (1) W. FELLER--ON THE KCLMOGORGV-SMIRNOV KLMO 860

LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTIONS-- KLMD 8T0
ANNALS OF MATH. STAT., 19, 1948. 177-189, KLMC 880

{2) M. SHIRNCV--TABLE FOR ESTIMATING THE GCCOMESS OF FIT KLMO 890

OF EMPIRICAL DISTRIBUTIONS--ANNALS OF MATH. STAT., 19, KLMO 900

1946. 279-281. KLMO 910

13) R. VON MISES--MATHEMATICAL THEDRY OF PROBABILITY AND KLMO 920
SYATISTICS--ACADEMIC PRESS, NEW YORK, 1964. &90-493, KLMO 930

{4) B.V. GNEDENKO--THE THMEORY OF PROBABILITY--CHELSEA KLLMD 940
PUBLISHING COMPANY, NEW YORKR, 1962. 384-401. KLMD 950

KLMD 960
NeeeeeessseeesscssnnasacessastsasccsassesassssssasasascssensaccccsKLMO 970
KLMO 980

SUBROUTINE KOLMOIXyNyZ,PROB,IFCOD U,S,1EP) KLMO 990
DIMENSTON XI(1) KLMD1000
. KLNO1010
NON DECREASING ORDERING COF X(I)'S (DUBY METHOD) KL®O1020
KLMO1030

1ER=0 KLMO1040
D0 5 1=2.N KLMC1050
TFIXUII=XLI=-1001,5,5 KLMO1060
TEMP=XI(1) KLMOLOTO
IK=1-1 KLMO1080
DO 3 J=1,IM KLMO1090
L=1-J KLMOL 1C0
IFITEMP=XIL)) 2y 40é KLMOLLLO
X{L+ 1) =XIL) KLMOL120
CONT INUE KLMDL130
X(1V=TEMP KLMOL140
Go 10 S KLMOL150
X(LOL)=TEMP KLMO1160
CONT ENUE KLMOL1TO
] KLMOL180

COMPUTES MAXIMUM DEVIATION ON IN A3SOLUTE VALUE BETWEEN KLMO1190
EMPIR]ICAL AND THECREYICAL DISTRIBUTIONS KLMO1200
KLMO1210

© NM1l=N-1 KLMO1220
XN=N KLMO1230
ON=0.0 KLMO1240
F$=0.0 KLMN1250
IL=1 KLMOL1260
DO T M=IL.VM1 KLKO1270
J=1 KLMOL 280
IFIX(II-%(I010)9, 7,9 KLMDL 250

[aXalal

LD~

10
11

13

B
w

17
18
19
20
21
22

23
24

25
26

27

28

29

CONT INUF

J=N

IL=0+1

F1=FS
FS=FLOAT(J) /XN
IF(IFCOD=2110413,17
IFISILY, 11,12
1ER=1

GO0 ¥0 29

2 =(xXtJy-uiss

CALL NOTRUZ,Y,0)
G0 TO 27

IFISVLL, 15,14
I=(X{J)-UI/S+1.0
IFL2ILS 15,16
Y=0.0

GO 10 27
Y=1.-EXPI-4)

GO 7O 27
IFLIFCOD-4)18, 20,26
TF(S)19, 11,19
Y=ATAN((X(J)-U)/S)1*0,.3183099+0.5
60 Yo 27
IF(S-U)ll,11,21
IFIX(JI-UID2,22,23
¥=0.0

Go 1O 27
TF(X{J)-5125:25+24
¥=1.0

co 10 27
Y=(X1J)-ul/1S-W)
GO YO 27

[ER=1

GO YD 29
El=ABS(Y-FI)
ES=ABSIY-FS)
DN=AMAX] (DN, EI.ES)
IFLIL-N)6,8,28

COMPUTES Z=DN®SQRT{N} AND

Z=DN*ZQRTIXN)-
CALL SMIRNLZ,PROB)
PROB=1.0-PROB
RETURN

END

PROBABILICIY

KLM01300
KLMOl 310
KLM01320
KLM®O1330
KLMCI 340
KLMOL350
KLMO1 360
KLMOL1370
KLMOL1380
KLMO1390
KLMOL400
KLMCL410
KLMOL420
KLHOL1430
KLMD1 450
KLMOl450
KLMOL 460
KLMOl&T70
KLMOl480
KLMO14C0
XLMOLS00
KLMCLl510
KLMO1520
KLMO1530
KLMO1540
KLMO1550
KLMOL550
KLMO1570
KLMOL 520
KLMO1590
KLMO1690
KLMOLl610
KLMOl620
KLMO1630
KLMD1640
KLMO16%0
KLMO1650
KLMO1670
KLMOL1680
KLMOl630
KLMDL700
KLMGL710
KLMOL720
KLMO1730
KLMOD1740
KLMO1 750

1.0

2.0

3.0

8465320

25201-6001-RU-00

Page i

TABLE OF CONTENTS

INTRODUCTION
1.1 STUDY OBJECTIVES
1.2 STUDY APPROACH [

1.2.1 Initial Phase: Quick Quantifi
1.2.2 Evaluation of Quick Quantifi

1.2.3 Final Phase: Hierarchical Characteristics and
Anomaly-Detecting Metrics

1.3 MAJOR RESULTS

1.4 USEFUL DIRECTIONS FOR FURTHER RESEARCH
SOFTWARE AND THE SOFTWARE DEVELOPMENT PROCESS
2.1 THE SOFTWARE DEVELOPMENT PROCESS

2.2 THE SOFTWARE PRODUCTS

Software Requirements Specification
Preliminary Design Package
Validation Test Plan

Final Design Specification

Validation Test Procedures
Test Report
User's Manual

N N NN NN D NN NN
(RS A ST A S B A T A I A I S I LS T N)

:
2

3

4
.9 Development Test Plan/Procedures
6

7

8

9

N

Maintenance Manual

CHARACTERISTICS OF QUALITY SOFTWARE

3.1 SOFTWARE QUALITY - HOW AND WHY IT SHOULD BE MEASURED
3.2 DEVELOPING DEFINITIVE SOFTWARE CHARACTERISTICS

3.3 SOFTWARE CHARACTERISTICS: INITIAL WORKING SET

3.3.1 Understandability
3.3.2 Completeness
3.3.3 Conciseness

1-4
1-5
1-5
2-1
2-1
2-2

2-7
2-7

2-7
2-8

2-8
2-8

3-1
3-1

3-3
3-4

- 3-6

4.0

5.0

25201-6001-RU-00

Page i

Portability
Consistency
Maintainability
Testability
Usability

.9 Reliability

.10 Structuredness

W W W w W w w w
W W w w w w w w
0o v OO0 OO

.11 Efficiency
3.4 SOFTWARE CHARACTERISTICS: REVISED SET

3.4.1 Relationship Between Characteristics and
Primitives

~

METRICS
4.1 GENERAL

4.1.1 Definitions and Assumptions
4.1.2 Overall Procedure

4.2 CHARACTERISTICS OF QUALITY METRICS

4.2.1 Correlation with Software Quality
"4.2.2 Potential Benefits of Applying Metrics
4.2.3 Quantifiability

4.2.4 Feasibility and Completeness of Automated
Evaluations

4.3 EVALUATION OF CANDIDATE METRICS
4.4 REFINED METRICS
4.5 DEVELOPMENT OF DETAILED ALGORITHMIC FORMS

4.5.1 Introduction

4.5.2 Software Products Associated with Computer
Programs

4.5.3 On Formulating Algorithms for Metrics
4.5.4 An Example of Detailed Metric Development

SOFTWARE PRODUCTION GUIDELINES FOR QUALITY SOFTWARE
5.1 APPLICATION OF GUIDELINES TO SOFTWARE PRODUCTION PHASES

Page

3-9

3-10
3-11
3-12
3-14
3-15
3-15

3-17

323
4-1
4-1

4-1
4-1

4-2

4-2
4-3
4-3

4-5

4-12
4-32
4-32
4-32

4-33
4-33

5-1
5-1

Bl

5.3

5.4

25201-6001-RU-00

Page iii

5.1.1 Guidelines for Requirements Phase
5.1.2 Guidelines for the Design Phase

5.1.3 Guidelines for the Coding and Checkout Phase
5.1.4 Guidelines for the Development and System

Test Phase
5.1.5 Operations and Maintenance

AUTOMATED TOOLS AS AN AID TO THE SOFTWARE PRODUCTION

PROCESS

APPLICATION OF METRICS TO ERROR DETECTION AND
CORRECTION

5.3.1 Error Experience Data Base and Analysis
Guidelines

5.3.2 Additional Metric Extensions Formulated

5.3.3 Analysis and Discussion

COST IMPLICATIONS OF METRICS

5.4.1 Long-Term Benefits
5.4.2 Immediate Benefits

5.4.3 A Model for Cost Saving Analysis by
Application of Metrics

6.0 SURVEY OF RELATED WORK

APPENDIX

Page
5-2
5-7
5-10

5-10
5-12

5-12
5-16
5-18

5-18
5-36
5-36
5-38
6-1

Al-1

25201-6001-RU-00
Page 1-1

1.0 INTRODUCTION

1.1 STUDY OBJECTIVES

The objectives of this study were to identify a set of characteristics
of quality software and, for each characteristic, to define a metric such
that:

1) Given an arbitrary program, the metric provides a quantitative

measure of the degree to which the program has the associated
characteristic, and

2) Overall software quality can be defined as some function of the

values of the metrics.

Although "software" can have many components such as functional
specifications, test plans, and data collection guidelines, this study
concentrates on metrics which are applied to FORTRAN source programs
(which may include extensive use of comment cards). However, many of the
metrics in the report can be adapted straightforwardly to other software
components. |

1.2 STUDY APPROACH

1.2.1 Initial Phase: Quick Quantification

The study began by formulating a Tist of software characteristics,
formulating a large number of quantities which could be quickly derived
from a scan of a FORTRAN program and which appeared to have some
correlation with software quality, and formulating an overall metric for
software quality as a linear combination of the individual quantities.

1.2.2 Evaluation of Quick Quantification

Next, an evaluation of the results of the initial phase was performed.
Several significant conclusions emerged.

1.2.2.1 For virtually all the simple quantitative formulas, it was easy
to find counterexamples which eroded their credibility as indicators of
software quality. Some examples are given below.

1) A metric was developed to measure program complexity in terms

of the fraction of program statements which are branch statements.
However, consider a program which reads some input, proceeds to

1.2.2.2

25201-6001-RU-00
Page 1-2

an m x m decision table, referring to (say) m separate tasks,
each n statements long, followed by a printout and terminate.
Excluding the read and print statements, the fraction of branch
statements is:

2
FB=——— = M

+
m2 + T m n

This program should be equally "good" for any reasonable values
of m and n. However,

ifm=10andn =1, FB
ifm=3and n = 30, FB

0.91
0.09

A metric was developed to calculate the average size of program
modules as a measure of structuredness. However, suppose one

has a software product with n 100-statement control routines and
a library of m 5-statement computational routines, which would be
considered well structured for any reasonable values of m and n,
then, if n = 2 and m = 98, the average module size is 6.9
statements, while if m = 10 and n = 10, the average module size
is 52.5 statements.

A metric was developed for the fraction of statements with
potential singularities (divide, square root, logarithm, etc.)
which were preceded by statements which tested and compensated
for singularities. However, often the operation is in a context
which makes the singularity impossible; a simple example is
calculating the hypotenuse of a right triangle:

Z = SQRT(X**2 + Y**2)

Metrics were developed for the number of comment cards, the
average length of comments, etc. However, it was fairly easy to
recall programs with fewer and shorter comments which were much
easier to understand than some with many extensive but poorly
written comments.

The software field is still evolving too rapidly to establish

metrics in some areas. In fact, doing so would tend to reinforce current

practice, which may not be good. For example, some of the extra-program

metrics included:

1)

2)

Existence of accompanying flow charts. However, with structured
programming, these may not be needed.

Existence of test plan and conformity with (unit test, subsystem
test, system test, integration) sequence. However, top-down
programming performs these in parallel via stubs and a test
skeleton.

25201-6001-RU-00
Page 1-3

3) Conformity of manpower plan with (46 percent analysis, 20 percent
coding, 34 percent testing) breakdown. However, the use of top-
down and other design validation procedures and the availability
of ?utomated test tools may reduce the testing effort a great
deal.

1.2.2.3 In software product development and evaluation, one is generally
far more interested in where and how rather than how often the product
is deficient. Thus, the most valuable automated tools for software

analysis would generally be those which flagged deficiencies or anomalies

in the program rather than just producing numbers. This has, of course,
been true in the past for such items as compiler diagnostics; one would be
fairly irritated with a mere statement that "1.17 percent of your statements
have unbalanced parentheses."

1.2.2.4 Calculating and understanding “the value of a single, overall metric
for software quality may be more trouble than it is worth. The major problem
is that many of the individual characteristics of quality are in conflict:
added efficiency is often purchased at the price of portability, accuracy,
understandability, and maintainability; added accuracy often conflicts

with portability via dependence on word size; conciseness can conflict

with legibility. Users generally find it difficult to quantify their
preferences in such conflict situations. Another problem is that the

metrics -are generally incomplete measures of their associated charac-
teristic. To summarize these considerations:

1) The quality of a software product varies with the needs and
priorities of the prospective user.

2) There is, therefore, no single metric which can give a uni-
~versally useful rating of software quality.

3) At best, a prospective user could receive a useful rating by
furnishing the rating system with a thorough set of checklists
and priorities.

4) Even so, since the metrics are not exhaustive, the resulting
overall rating would be more suggestive than conclusive or
prescriptive.

5) Therefore, the best use for metrics at this point is as individual
anomaly indicators, to be used as guides to software development,
acquisition, and maintenance.

25201-6001-RU-00
Page 1-4

1.2.2.5 Most sets of software characteristics are too loosely defined
and overlapping to be of much practical use*. This led to a further
effort to define more precisely the set of characteristics and their
interrelations with each other, and with a refined set of quality metrics.

1.2.3 Final Phase: Hierarchical Characteristics and Anomaly-Detecting
Metrics

Based on the conclusions above, the study proceeded along the following
l1ines to develop a hierarchical set of characteristics and a set of anomaly-
detecting metrics.

1) Define a set of characteristics which are important for software,
and reasonably exhaustive and nonoverlapping.

2) Develop candidate metrics for assessing the degree to which the
software has the defined characteristic.

3) Develop a set of "characteristics of quality metrics," including
such items as correlation with software quality, magnitude of
potential benefits of using, quantifiability, ease of automation.

4) Evaluate each candidate metric with respect to the above criteria,
and with respect to its interactions with other metrics: overlap,
dependencies, shortcomings, etc.

5) Based on these evaluations, refine the set of software charac-
teristics into a set which is more mutually exclusive and
exhaustive with respect to the uses of software quality
evaluation.

6) Define the metrics and reorganize them with respect to the
primitive characteristics which resulted from Step 5.

7) Develop detailed algorithmic forms for the metrics.

Many of the resulting anomaly-detecting metrics involve some degree
of source program text analysis and structure analysis. Although many
of these analyses are straighforward, they are sufficiently complex to
make their detailed development a job too large for the scope of this
small study. Thus, in Step 7, the study proceeded to detailed algorithms

*One exception is the set given by Wulf in his "Report of Workshop #3" for
the Monterey Symposium on the High Cost of Software, September 1973.

25201-6001-RU-00
Page 1-5

only in one area, that of header commentary; elsewhere, the type

of automated evaluation (algorithm or compliance checker) is indicated,
along with an assessment of the ease of developing the evaluation program
and the degree of completeness of the resulting evaluation.

1.3 MAJOR RESULTS
The major results of the study are the following:

1) An assessment of the limitations of purely quantitative measures
of software quality, given in Section 1.2.2 above.

2) A definitive hierarchy of characteristics of software quality,
the "Characteristics Tree," developed in Section 3.0.

3) An extensive list of anomaly-detecting metrics, thoroughly
classified with respect to the characteristics of software
quality and evaluated with respect to a set of "Characteristics
of quality metrics." These metrics are developed in Sections 4.1
through 4.4 from an initial list given in the Appendix.

4) A detailed algorithm and guidelines for using metrics to perform
assessment of program header comments is given in Section 4.5.

5) A discussion and cost-benefit analysis of the potential impact
of using anomaly-detecting metrics during the software process.
This is contained in Section 5.0, based on the descriptive
outline of the software development process given in Section 2.0.

6) An annotated bibliography of relevant literature, given in
Section 6.0. |

The study's most important contribution though, has been to provide,
for the first time, a clear, well-defined framework for assessing the often
slippery issues associated with software quality, via the consistent and
mutually supportive sets of definitions, distinctions, guidelines, and
experience summaries cited above. This framework is certainly not complete,
but it has been brought to a point sufficient to support the evaluation
of the relative cost-effectiveness of prospective code-analysis tools
presented in this report, and to serve as a viable basis for future
refinements and extensions.

1.4 USEFUL DIRECTIONS FOR FURTHER RESEARCH

Based on the foundation established in this report, a number of
research projects could be undertaken which would be Tikely to produce
useful and significant results. These include:

1)

25201-6001-RU-00
Page 1-6

Detailed design and development of computer programs to perform
the evaluation indicated by the anomaly-detecting metrics.

Application of the resulting programs to software development
and software package procurement efforts, followed by an
evaluation and refinement of the metrics.

Adaptation of the metrics into checklists to aid software analysts
in assessing the design implications of various software
requirements.

Extension of the metrics to cover other software products besides
the source code.

Establishing a continuing service for the accumulation and
dissemination of information on software metrics and experience
in using them.

25201-6001-RU-00
Page 2-1

2.0 SOFTWARE AND THE SOFTWARE DEVELOPMENT PROCESS

In this report, software is defined as computer program code and its
associated necessary data and documentation. The Software Development
Process is the formal process by which program objectives are transformed
into program requirements, then into design specifications, implemented
into code, tested, and finally placed and maintained in operational status.
The degree of formality of the Software Development Process depends upon
the purpose and end use of the software and also upon the size of the
software development team involved. At one extreme lies the one-man, one-
shot design analysis computer program developed in the informal environment
of a timeshare terminal. At the other extreme lies the critical real-
time program.requiring thousands of man-hours to develop. Obviously,
the degree of formality required in the Software Development Process differs
radically between these two extremes. This section of the report treats
the formal Software Development Process.

The relationship between quality software and the Software Development
Process is analogous to that between quality hardware and what might be
termed the "Hardware Development Process." Just as experience dictated the
need for formal development processes in order to insure quality hardware,
experience has shown the need for formal processes in the development of
quality software. (The tendency to continually modify software creates an
added dimension of difficulty in the software case, however.) In essence,
it is not enough just to only examine the end item, be it hardware or software,
in order to judge its quality. It is not feasible, within the usual
constraints of time and resources, to test the end item in all modes of
operation, in all environments, or for all conditions under which it is
expected to perform. Instead, judicious review and testing of the software
products generated within the framework of the formal Software Development
Process is the best application of available resources.

2.1 THE SOFTWARE DEVELOPMENT PROCESS

The Software Development Process may be divided into a number of more
or less independent development steps or phases. Just how many steps and
just what is carried out within those steps is to some degree’ dependent
upon the purpose and size of the software being developed. The software

25201-6001-RU-00
Page 2-2

development steps involved in the delivery of a large software system to

a customer is illustrated in Figure 2-1. Each of these development steps
produces software products or makes specific contributions to software
products. The principal software products are shown in Figure 2-2, where
it will be noted that software products are of two types: documentation
and computer program code. Certain groupings of these software products
form the basis for formal technical reviews. Upon approval, some of the
software products are "baselined" and serve as the basis for configuration
management. The relationships among the software products, the technical
reviews, and the baselines are summarized in Table 2-1. |

The primary function of software configuration management is the
control of changes to established baselines, not only to customer-recognized
baselines, such as the Allocated and Product Baselines, but to project
internal baselines as well, such as Design Review and Formal Test Baselines.
Software configuration management performs other functions as well, including
control of configuration identification, maintaining configuration status
records, and monitoring configuration reviews and audits.

In summary, the formal Software Development Process is organized into
a number of steps, each of which produces or contributes to the production
of certain specific software products. Formal review and audits of certain
software products lead to the establishment of "baselines," and these base-
lines serve as the basis for configuration management, which is so crucial
in the development of quality software.

The next section further defines the principal software products,
while subsequent sections will deal with software quality aspects.

2.2 THE SOFTWARE PRODUCTS |

For the discussion of this section, it is assumed that the software
being developed is a subsystem of a larger entity and that a systems
requirements specification has been previously formulated and baselined.
It is further assumed that this systems requirements specification has
allocated to the Software Subsystem the top-level functional, performance,
and design requirements that the Software Subsystem is expected to meet

|
;.

25201-6001-RU-00

Page 2-3

JONVNIINTYW
aNY
SNOILYY¥3do

84eM]1J0S 9| edS-abue] uos sdels Juawdo|arag auem) Jos

ONIL1S31
WIL1SAS ANV
IN3IWd0T3IA3A

N

1NO0AI3HI
aNV

ONIA0J

N

NIIS3d
d311Iv13d
% SISATUNY

N

NI9IS3d
AUYNIWI134d

N

"1-g @4nbL4
NOILINI43Q
SINIWIYINDIY
THYML40S
,n’c NOILINI43
SINIWIYINDIY

W3 1S AS

