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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes” character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should be in English. They should contain at least 100 pages of

scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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‘PREFACE

This book is a continuation of the volume "Strong 1limit theorems
in non-commutative probability'", Lecture Notes in Mathematics 1110
(1985). It is devoted mostly to one subject: the noncommutative versions
of pointwise convergence theorems in L2—spaces in the context of von
Neumann algebras.

In the classical probability and ergodic theory the almost sure

convergence theorems for sequences in L2 (over a probability space)

belong to the most important and deep results of these theories. Let us
mention here the individual ergodic theorems, the results on the almost
sure convergence of orthogonal series, powers of contractions, martin-
gales and iterates of conditional expectations.

The algebraic approach to gquantum statistical mechanics suggests
the systematic analysis of theorems just mentioned in the context of
operator algebras. This is the main goal of this book. We consider a von

Neumann algebra M with a faithful normal state ¢ and take H==L2(M,¢)

- the completion of M under the norm x - m(x*x)l/z, X € M. Then we

introduce a suitable notion of almost sure convergence in H (general-
izing the classical one) and prove a series of theorems which can (and
should) be treated as the extentions of the well-known classical results
(like individual ergodic theorems, Rademacher-Menshov theorem for ortho-
aonal series or theorem of Burkholder and Chow on the almost sure con-
vergence of the iterates of two conditional expectations etc.).

The classical pointwise convergence theorems for sequences in L2

are, as a rule, non-trivial extensions of much easier results concerning
the convergence in Lz—norm. The same situation is in the noncommutative

case. Most of the noncommutative Lz-norm versions of the analogical

classical results can be rather easily obtained by a natural modification
of the calssical argument. Passing to the noncommutative almost sure
versions needs as a rule new methods and techniques.

Very often the algebraic approach makes much clearer the general
idea which is behind the result concerning, say, real functions. At the
same time the proofs provide some new tools in the theory of operator
algebras. This is one of the reasons we decided to collect and prove in



viil

a systematic way the results concerning the almost sure convergence in
L2 over a von Neumann algebra.

Only very few bibliographical indications have been made in the
main text of the book. More complete information concerning the subject
the reader will find in the '"Notes and remarks" concluding the chapters.

We hope that this book may be of some interest to probabilists and
mathematical physicists concerned with applications of operator algebras
to quantum statistical mechanics.

The prerequisites for reading the book are a fundamental knowledge
of functional analysis and probability. Many of the results presented in
the book have been discussed and also obtained during the seminar on the
noncommutative probability theory in E6dZ University in the years 1985-
-1990. I would like to thank very much all my colleagues from this sem-
inar for many interesting and fruitful discussions.

I sincerely wish to thank Mrs Barbara Kaczmarska who took great
care in the typing of the final version of the book.

L6dz, November 1990. R. Jajte
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Chapter 1

ALMOST SURE CONVERGENCE IN NONCOMMUTATIVE Lz-SPACES

1.1. Preliminaries

Throughout the book we constantly use the terminology of operator
algebras. In fact, only very little knowledge of this theory is needed
for reading this volume. As we mentioned in the Introduction, this book
is a continuation of [50]. All necessary (and sufficient for our pur-
pose) information concerning the operator algebras has been collected
in the Appendix to [50].

Let us begin with some notation. In the sequel M will denote a
o-finite von Neumann algebra with a faithful normal state ¢. M~ de-
notes the commutant of M. Proj M will stand for the set of all ortho-
gonal projections in M. M+ will denote the cone of positive elements
of M. For p € Proj M, always pl =1 - p. We shall write 1 for the
identity operator in M. M, denotes the predual of M.

In the whole book we shall discuss the problems concerning the

Hilbert space H = L2(M,¢) which is the completion of M under the

norm x - d)(x*x)l/2

(GNS representation space for M with respect to
¢). In the sequel we assume that M acts in a standard way, on the

Hilbert space H = LZ(M,¢) with a cyclic and separating vector § such

that ¢(x) = (xQ,82), for x € M. We shall identify M with the sub-
set MQ = {xXQ : x € Q} of H. The norm in H will be denoted by I |,
and the norm in M by | I

For a £ € H and p € Proj M we set

S = {(x,) cM: = x,=¢ in H and DI & o}
£E,p k ko1 kK k=1 %
converges in norm in M}
and
N&Hp = inf {I = xkplloo : (Xk) S sg,p}

k=1

(with the usual convention inf @ = +=).

Obviously, for all £¢,n € H, we have



g + < +
1§ an MENp Han
and for x € M

Hxnllp s lIxpl .
We adopt the following definition of the almost sure convergence in H.

1.1.1. DEFINITION. A sequence (En) in H = LZ(M,¢) is said Zc be almost

sunely (a.s.) convergent to § € H 1§ 4on eveny € > 0, therne exists a profec-
tion p 4n M such that ¢(1-p) < € and llt’,n—gllp»O as n > e, In

othen wonrds, En > 0 a.s. if fon every € > 0, zthere 48 a p € Proj M with

(1 - p) < £ and a matrnix (xn k) with entries in M such that
r
DI 4 Q=g M H and I = pl, > 0.
k=1 Mk n k=1 DsK

It is easily seen that in the classical commutative case of M = L

(over a probability space) the convergence just defined coincides with
the usual almost everywhere convergence (via Egorov s theorem). Let us
recall that for the elements of the algebra M the following kind of
convergence (introduced by E.C. Lance) is mostly used. A sequence
(xn) c M is said to be almost uniformly convergent to xXx € M if for
every € > 0 there exists a projection p € Proj M with ¢(1 - p) < ¢

such that Il(xrl - x)pl_ >0 as n » «. Obviously, the almost uniform
convergence implies the almost sure convergence, i.e. if X0 xe€M and
X, > X almost uniformly in M, then an - xQ almost surely in H.

Let us remark that the above definition of the almost sure convergence
in H can be formulated equivalently as follows: gn -+ 0 a.s. in H

if for every strong neighbourhood U of the unity in M, there are a

projection p € U and a matrix (xn k) with entries in M such that
;Elxn'kﬂ = gn (n=1,2,...) in H and Hﬁ:xn'kphm - 0 as n -> o,

This means that the a.s. convergence in H depends only on M and

cyclic element § € H.

To end this section let us compare our notion of the almost sure
convergence in H introduced in Definition 1.1.1 with another given
by M.S. Goldstein [36]. He uses the following notion of the a.s. con-
vergence in H. Namely, for gn, £ € H, gn -+ £ a.s. in the sense
of Goldstein if, for every € > 0, there exists a projection pe&€Proj M



and (xk) c M such that ¢(1 - p) < g, p(in -§) = x.Q, for n
large enough, and "xn"m > 0 as n > «,

The notion of the a.s. convergence in H introduced in Defini-
tion 1.1.1 seems to be more natural (though) in the classical case of
M = L_ (over a probability space) both notions coincide). The reason
for that we prefer our definition is, roughly speaking, the following.
The almost sure convergence has a very clear and nice interpretation
on the ground of the classical probability and statistics. It says
that we have the convergence of practically all (with probability one)
realizations of a suitable stochastic process. In quantum mechanics the
interpretation is entirely different (we have no trajectories of a pro-
cess in the sense of the classical theory). In quantum probability we
are rather interested to be close to the uniform convergence of opera-
tors (observables). Let us mention here that in connection with the
characterization of C*-algebras by Gelfand and Naymark, Segal argued
that the uniform convergence of observables has a direct physical in-
terpretation, while weak convergence has rather analytical meaning.
This opinion is not common and rather disputable but at least we can
say that the uniform convergence is the best one not only from ana-
lytical but also from the physical point of view. '"Close to the uni-
form convergence'" means in our context uniform convergence on large
subspaces, where large subspacess are just those for which the values
of a state on the corresponding orthogonal projections are close to one.
Our definition of the a.s. convergence seems to fit better to this in-
terpretation then the notion proposed by Goldstein because we are in-
terested in what happens on the (large) subspaces. That is why the pro-
jection p appearing in our definition of the a.s. convergence is put
on the right side of the operators (observables) not on the left side
of them. Clearly, both definitions coincide for selfadjoint observables
i.e. when we consider only the selfadjoint part M58 of M and its

completion under the norm | |.

1.2. Auxiliary results

In section we collect a few results concerning some simple proper-

ties of the almost sure convergence in H. In the sequel, for x € M,

we put lxl2 = x*x. Let us note the following inequality



1.2.1. LEMBA. Let ag,0y, , O be complex numberns, and Riree-rXyg € M.
Then
N N N
| = ayx; 1% s = Jog|? = |x;0°.
i=1 i=1 i=1

Procf- This easily follow by induction from the inequality x*x+ y*y <

X*x* + y*y* (x,y € M). =

We call o € L(M) a Schwarz map if o satisfies the inequality
|a(x)|2 < a(|x|2), for x € M. Note that a is then necessarily a
contraction in M.

Amap o € L(M) is said to be ¢-contractive if ¢(ax) < ¢(x), for

all x e M+. A normal ¢-contractive Schwarz map in M will be called

a kernel.
Let Bo be a kernel in M. Then one can extend BO (in a unique
way) to a contraction B in H. Namely, we put B(xQ) = B(x)%Q, for

x € M, and then extend the obtained contraction from MQ to the whole
H by continuity. In this case we shall say that the contraction B in
H 1is generated by the kernel BO in M.

The most important examples of kernels are ¢-preserving *-endo-
morphisms of M (in particular isomorphisms) and ¢-preserving condi-
tional expectations. They generate isometries (in particular wunitary
operators) and orthogonal projections in H, respectively.

For a kernel o : M > M, we denote by o : M > M the dual of

a. In particular, we have

(a(x)yQ,Q) (xa”(y)Q,Q)

and
(a”(y)Q,) £ (y9,9) for x € M, vy eEM

(for more details see f. ex. [50], p. 14).
Now, we shall prove a result concerning the continuity of some

kernels with respect to the a.s. convergence.

1.2.2. PROPOSITION. Let Bo be a ¢ -preserving *-endomonphism of M. Denote
by B the contraction in H genenated by BO. Then, 4on every (En) c H,

F’n -0 a.s.4n H .implies BEn >0 a.s. 4in H.

Pacef- Assume that En - 0 a.s. in H. Let € > 0 be given. Then



there exists a projection p € Proj M with o(1 - p) < €/2 and

(xn,k) c M such that an,kQ = F’n in H, the series > X

n,kp

converges in norm in M and X X, kphm - 0 as n -» «, By the prop-
k ’

erties of B, we have Bg_= )::Bo(xn k)Q in H and "ZBO()S'l k)Bo(p)llm»o

n
as n- o, Let Bo(p) = _/‘1 Ae(d)X) Dbe the spectral representation of
o
the operator Bo(p). Put gq = e([1/2,1]). Then we have q = Bo(p)a
1
a= s 1/)x e(d\) € M. Then also X Bo(xrl k)qllco - 0. Moreover ,
k ’

1/2
Bo(p) s q+ %(l - q) = %(1 + q) and, consequently, ¢(g) =21 - e. Sum-

ming up, for € > 0 there is a g € Proj M with ¢(1 - gq) < € and a
matrix (yn,k) = (Bo(xn,k)) c M such that B&n = ‘Eyn,kQ in H and

= Yy kqllm -+ 0 which means that Bgn - 0 a.s. and completes the
k ’

proof. ]
1.2.3. LBBA. For (£ ) CH, = nr,nu2 < implies £+ 0 a.s. in H.
n

Pwof. Let € > 0. We shall find p € Proj M such that ¢(1 -p) < ¢

and Ilgnllp - 0 as n » «., Let (xn,k) be a matrix with entries in
[ -k+1 -
M such that E,n = k§1 xn,kQ and "xn,km' < 2 IIF,nII, for n,k = 1,
2,... . Take (6.) with = 6 '1g 1% < e/4. Then = =
n k=1 k=1
= = s 2% (x, %) s 2 = s tug n? < e/2.
n=1 k=1 4 n=1

By Goldstein s maximal ergodic theorem ([36], [50], see also section

2.2 of Chapter 2) there exists & projection p € Proj M such that

S | 2
0(1 - p) S 2 = 62716 1% < €
k=1 ¥ K

2 -k+2 _
and Ilplxn'kl pll, < 2 én (n,k =1,2,...).
Moreover, since §_ = X x 2, we have
n k n,k
- > 2_.1/2 1/2
lIEnIIp s k)gl len’kpllm < kE:l Ilp|xn’k] pl_ < 5<Sn - 0,

which means that {,n»o a.s. in H. =



n
1.2.4 (KROMECKER'S LEMEA). Lei ({,n) CH and = f’k - n a. 2. Then
4 n k=1
n > kE,k > 0 a.s.
k=1
Proof. Let us remark first that, for every sequence (nn) CH and
n
every p € Proj M, IIn_l_ > 0 implies In 1 = n -+ 0. Indeed, let
n'p k=1 k! P

lmnllp - 0. Then there exists a matrix (xn k) with entries in M such

- ’
that kfl xn,kQ = My, (n=1,2,...) and n}Elx kP! 2 0 as n > o,
Thus

n n ©

1 1

= X N, == = DI ¢ Q

L R R T
and

12 e 1 2
= = > x pl, == = I = x pi, > 0
D=1 1= Kol Dg=1 1=1 K1

=1

n
Let us put n_ = = F’k' By the assumptions, for every e >0,

k=

n
1
there exists p € Proj M such that ¢(1 - p) < £ and llnn = nhp - 0.
n
Then ||l > (n, = n)l_ » 0. Consequently,
ng=1 K P
II% ; kf,kll = Ing, —;11- ; M1
k=1 *P k=1 P
1 B
s lmn . r]llp + IIE kfl (nk_1 = n)llp - 0,

which ends the proof. =

The following result is a noncommutative version of the well-

-known theorem of Revesz [94].

1.2.5. THECREM. Let (E,n) C H such that sup IIEnIi < », [hen thene ex.ists
n

an {ncreasing Aequence of positive integens (nk) and n € H such that

_1 .
kK “(¢ + ... + £ ) > n a.s. in H.
| B



Proof. Let ngin sC (i=1,2,...). By the weak compactness of (gib
there is a sequence (ns) of positive integers and n € H such that
<EL o> > <UD as s > =,
s
for all vy € H.
Put gn -n =g Then ok 0 weakly. Therefore there 1is a
s
subsequence (z_ ) of (g,) such that
n, k
1 f =1,2,...,k-1;
I<Cn rgn >I s _kl or s ! !
k s 2 and k = 1,2,...
Put
o = k'l(cn + +z )
1 B Oy
It is easily seen that Nokhz = O(k-l)) and, consequently,
> lo 2H2 <
k=1 k
2 2
For k“ s N< (k + 1)°, we have
N = N,k * PN,k
where
-1,2
=N "k
aN,k ok
and
B = N"Ig + T + +z )
N,k n o, n o, e Ny :
(k®+1) (k“+2)
It is not difficult to show that
o o 1By N2 < w.
k=1 .2 g = Ak
k“sN<(k+1)
The last inequality and > o 2H2 < » imply that, for every c >0,
k=1 k



