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INTRODUCTION TO QUANTUM EFFECTS IN GRAVITY

This is the first introductory textbook on quantum field theory in gravitational
backgrounds intended for undergraduate and beginning graduate students in the
fields of theoretical astrophysics, cosmology, particle physics, and string theory.
The book covers the basic (but essential) material of quantization of fields in
expanding universe and quantum fluctuations in inflationary spacetime. It also
contains a detailed explanation of the Casimir, Unruh, and Hawking effects, and
introduces the method of effective action used for calculating the backreaction of
quantum systems on a classical external gravitational field.

{The broad scope of the material covered will provide the reader with a thorough
perspective of the subject. Complicated calculations are avoided in favor of sim-
pler ones, which still contain the relevant physical concepts. Every major result is
derived from first principles and thoroughly explained. The book is self-contained
and assumes only a basic knowledge of general relativity. Exercises with detailed
solutions are provided throughout the book.

ViatcHESLAV F. MUKHANOV is Professor of Physics at Ludwig-Maximilians
“University, Munich. His main result is the theory of inflationary cosmological
perturbations. Professor Mukhanov is author of Physical Foundations of Cosmol-
ogy (Cambridge University Press, 2005). He also serves on the editorial boards of
leading research journals and is Scientific Director of the Journal of Cosmology
and Astroparticle Physics (JCAP).

SERGEI WINITZKI is Research Associate in the Department of Physics at Ludwig-
Maximilians University, Munich. His main areas of research include quantum
cosmology, the theory of dark energy, the global structure of spacetime, and
quantum gravity.



Preface

This book is an expanded and reorganized version of the lecture notes for a course
taught at the Ludwig-Maximilians University, Munich, in the spring semester of
2003. The course is an elementary introduction to the basic concepts of quantum
field theory in classical backgrounds. A certain level of familiarity with general
relativity and quantum mechanics is required, although many of the necessary
concepts are introduced in the text.

The audience consisted of advanced undergraduates and beginning graduate
students. There were 11 three-hour lectures. Each lecture was accompanied by
exercises that were an integral part of the exposition and encapsulated longer but
straightforward calculations or illustrative numerical results. Detailed solutions
were given for all the exercises. Exercises marked by an asterisk (*) are more
difficult or cumbersome.

The book covers limited but essential material: quantization of free scalar
fields; driven and time-dependent harmonic oscillators; mode expansions and
Bogolyubov transformations; particle creation by classical backgrounds; quantum
scalar fields in de Sitter spacetime and the growth of fluctuations; the Unruh effect;
Hawking radiation; the Casimir effect; quantization by path integrals; the energy-
momentum tensor for fields; effective action and backreaction; regularization of
functional determinants using zeta functions and heat kernels. Topics such as
quantization of higher-spin fields or interacting fields in curved spacetime, direct
renormalization of the energy-momentum tensor, and the theory of cosmological
perturbations are left out.

The emphasis of this course is primarily on concepts rather than on compu-
tational results. Most of the required calculations have been simplified to the
barest possible minimum that still contains all relevant physics. For instance,
only free scalar fields are considered for quantization; background spacetimes
are always chosen to be conformally flat; the Casimir effect, the Unruh effect,
and the Hawking radiation are computed for massless scalar fields in suitable
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X Preface

1+ 1-dimensional spacetimes. Thus a fairly modest computational effort suffices
to explain important conceptual issues such as the nature of vacuum and parti-
cles in curved spacetimes, thermal effects of gravitation, and backreaction. This
should prepare students for more advanced and technically demanding treatments
suggested below.

The authors are grateful to Josef GaBner and Matthew Parry for discussions and
valuable comments on the manuscript. Special thanks are due to Alex Vikman
who worked through the text and prompted important revisions, and to Andrei
Barvinsky for his assistance in improving the presentation in the last chapter.

The entire book was typeset with the excellent LyX and TgX document prepa-
ration system on computers running Debian GNU/Linux. We wish to express our
gratitude to the creators and maintainers of this outstanding free software.

Suggested iiterature

The following books offer a more extensive coverage of the subject and can be
studied as a continuation of this introductory course.

N. D. BirreLL and P. C. W. DAVIES, Quantum Fields in Curved Space (Cambridge
University Press, 1982).

S. A. FULLING, Aspects of Quantum Field Theory in Curved Space-Time
(Cambridge University Press, 1989).

A. A.Gris, S. G. MAMAEY, and V. M. MOSTEPANENKO, Vacuum Quantum Effects
in Strong Fields (Friedmann Laboratory Publishing, St. Petersburg, 1994).
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Part 1

Canonical quantization and particle production






1

Overview: a taste of quantum fields

Summary Quantum fields as a set of harmonic oscillators. Vacuum state. Particle
interpretation of field theory. Examples of particle production by external fields.

We begin with a few elementary observations concerning the vacuum in quantum
field theory.

1.1 Classical field

A classical field is described by a function ¢ (x, ¢), where x is a three-dimensional
coordinate in space and ¢ is the time. At every point the function ¢ (x, ¢) takes
values in some finite-dimensional “configuration space” and can be a scalar,
vector, or tensor. '

The simplest example is a real scalar field ¢ (x, t) whose strength is charac-
terized by real numbers. A free massive scalar field satisfies the Klein—-Gordon
equation

2 3 2
%%—Z@+m2¢z$—A¢+m2¢=o, (1.1)
e

which has a unique solution ¢ (x, #) for ¢ > #; provided that the initial conditions
& (x, ) and ¢ (X, 1) are specified.

Formally one can describe a free scalar field as a set of decoupled “harmonic
oscillators.” To explain why this is so it is convenient to begin by considering
a field ¢ (x, t) not in infinite space but in a box of finite volume V, with some
boundary conditions imposed on the field ¢. The volume V should be large
enough to avoid artifacts induced by the finite size of the box or by physically
irrelevant boundary conditions. For example, one might choose the box as a cube

3



4 Overview: a taste of quantum fields

with sides of length L and volume V = L3, and impose the periodic boundary
conditions,

¢(x=0,y,z,t)=¢(x=L,y,z,t)

and similarly for y and z. The Fourier decomposition is then

1 K
¢ (x,1)=—=2 ¢(e™7, . (1.2)
W
where the sum goes over three-dimensional wavenumbers k with components
2
k, = ’2"", n,=0,+1,%2,...

and similarly for k, and k,. The normalization factor VV in equation (1.2) is
chosen to simplify formulae (in principle, one could rescale the modes ¢, by
any constant). Substituting (1.2) into equation (1.1), we find that this equation is
replaced by an infinite set of decoupled ordinary differential equations:

by + (K2 +m?) ¢y =0,

with one equation for each k. In other words, each complex function ¢y (?)
satisfies the harmonic oscillator equation with the frequency

oy =Vk2+m?,

where k = |k|. The “oscillators” with complex coordinates ¢, “move” not in
real three-dimensional space but in the configuration space and characterize the
strength of the field ¢. The total energy of the field ¢ in the box is simply equal
to the sum of energies of all oscillators ¢y,

1. 12 1
E=Y|= +-w?|d 2].
%:[2‘@(’ 2wk| Kl

In the limit of infinite space when V — oc the sum in (1.2) is replaced by the
integral over all wavenumbers Kk,
d’k

(2,"_)3/2 eik.x(bk(t)' (13)

¢(X, t) =

1.2 Quantum field and its vacuum state

The quantization of a free scalar field is mathematically equivalent to quantizing
an infinite set of decoupled harmonic oscillators.

Harmonic oscillator A classical harmonic oscillator is described by a co-
ordinate g(#) satisfying

g+ w?q=0. (1.4)



1.2 Quantum field and its vacuum state 5

The solution of this equation is unique if we specify initial conditions g (#y) and
g (). We may identify the “ground state” of an oscillator as the state without
motion, i.e. g(f) = 0. This lowest-energy state is the solution of the classical
equation (1.4) with the initial conditions ¢(0) = g(0) =0.

When the oscillator is quantized, the classical coordinate g and the momentum
p = ¢ (for simplicity, we assume that the oscillator has a unit mass) are replaced
by operators g(t) and p(t) satisfying the Heisenberg commutation relation

[G(9), p()] = [3(2), @(9)] = ik (1.5)

The solution g(f) =0 does not satisfy the commutation relation. In fact, the
oscillator’s coordinate always fluctuates. The ground state with the lowest energy
is described by the normalized wave function

PR wq?
Y(q) = [ﬁi] exp (— Z—h) -
The energy of this minimal excitation state, called the zero-point energy, is Ey =
1 hw. The typical amplitude of fluctuations in the ground state is 8¢ ~ v/i/w and
the measured trajectories g(¢) resemble a random walk around g = 0.

Field quantization In the case of a field, each mode ¢ (¢) is quantized as a
separate harmonic oscillator. The classical “coordinates” ¢y, and the corresponding
conjugated momenta m, = ¢; are replaced by operators fi)k, .. In a finite box
they satisfy the following equal-time commutation relations:

[0, 710 ()] = i8ic .

where &y _ is the Kronecker symbol equal to unity when k = —k’ and zero
otherwise. In the limit of infinite volume the commutation relations become

[q‘bk(t), -a*rk,(t)] =is (k+K), (1.6)

where 6 (k 4+ k') is the Dirac 8 function. To simplify the formulae, we shall almost
always use the units in which i=c = 1.

Vacuum state The vacuum is a state corresponding to the intuitive notions
of “the absence of anything” or “an empty space.” Generally, the vacuum is
defined as the state with the lowest possible energy. In the case of a classical
field the vacuum is a state where the field is absent, that is, ¢ (x, r) = 0. This
is a solution of the classical equations of motion. When the field is quantized
it becomes impossible to satisfy simultaneously the equations of motion for the
operator (2') and the commutation relations by (;S(x, t) = 0. Therefore, the field
always fluctuates and has a nonvanishing value even in a state with the minimal
possible energy.



6 Overview: a taste of quantum fields

M oy

x

Fig. 1.1 A field configuration ¢(x) that could be measured in the vacuum state.

Since all modes ¢, are decoupled, the ground state of the field can be char-
acterized by a wave functional which is the product of an infinite number of
wave functions, each describing the ground state of a harmonic oscillator with
the corresponding wavenumber k: ‘

2
V[o] x []exp (—Qk_lg)_kl_) = exp [—%Zwkmklzjl. 1.7)
k k

. The ground state of the field has the minimum energy and is called the vacuum
state. Strictly speaking, equation (1.7) is valid only for a field quantized in a
box. Note that if we had normalized the Fourier components ¢ in equation (1.2)
differently, then there would be a volume factor in front of w;. '

The square of the wave function (1.7) gives us the probability density for
measuring a certain field configuration ¢(x). This probability is independent of
time . The field fluctuates in the vacuum state and the field configurations can
be visualized as small random deviations from zero (see Fig. 1.1).

When the volume of the box becomes very large, we have to replace sums by
integrals,

14 1 (2m)3
Ry C N
and the wave functional (1.7) becomes
1
¥ [¢] ox exp [—5 [ #x |¢k|2wk:| . (1.9)

Exercise 1.1
The vacuum wave functional (1.9) contains the integral

Isfd3k |2 Vi +m2, (1.10)



