


F

Nanotechnology in Catalysis Volume 1

Bing Zhou, Sophie Hermans, and Gabor A. Somorjai

Nanotechnology in Catalysis *Volume 1*

Edited by

Bing Zhou

Headwaters NanoKinetix, Inc. Lawrenceville, New Jersey

Sophie Hermans

Catholic University of Louvain Louvain-La-Neuve, Belgium

and

Gabor A. Somorjai

University of California Berkeley, California

Library of Congress Cataloging-in-Publication Data

Nanotechnology in catalysis/edited by Bing Zhou, Sophie Hermans, Gabor A. Somorjai.

p. cm. — (Nanoscience science and technology)

Includes bibliographical references and index.

ISBN 0-306-48323-8

1. Catalysts—Congresses. 2. Nanotechnology—Congresses. 3. Nanostructure materials—Congresses. I. Zhou, Bing, Dr. II. Hermans, Sophie, Dr. III. Somorjai, Gabor A., Prof. IV. American Chemical Society. Meeting (221st: 2001: San Diego, Calif.) V. American Chemical Society. Meeting (224th: 2002: Boston, Mass.) VI. Series.

TP159.C3N37 2004 660'.2995—dc22

2003064027

ISBN 0-306-48323-8

©2004 Kluwer Academic/Plenum Publishers, New York 233 Spring Street, New York, New York 10013

http://www.kluweronline.com

10 9 8 7 6 5 4 3 2 1

A C.I.P. record for this book is available from the Library of Congress

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work

Permissions for books published in Europe: permissions@wkap.nl Permissions for books published in the United States of America: permissions@wkap.com

Printed in the United States of America

Nanotechnology in Catalysis *Volume 1*

Nanostructure Science and Technology

Series Editor: David J. Lockwood, FRSC

National Research Council of Canada

Ottawa, Ontario, Canada

Current volumes in this series:

Alternative Lithography: Unleashing the Potentials of Nanotechnology

Edited by Clivia M. Sotomayor Torres

Nanoparticles: Building Blocks for Nanotechnology

Edited by Vincent Rotello

Nanostructured Catalysts

Edited by Susannah L. Scott, Cathleen M. Crudden, and Christopher W. Jones

Nanotechnology in Catalysis, Volumes 1 and 2

Edited by Bing Zhou, Sophie Hermans, and Gabor A. Somorjai

Polyoxometalate Chemistry for Nano-Composite Design

Edited by Toshihiro Yamase and Michael T. Pope

Self-Assembled Nanostructures

Jin Z. Zhang, Zhong-lin Wang, Jun Liu, Shaowei Chen, and Gang-yu Liu

Semiconductor Nanocrystals: From Basic Principles to Applications Edited by Alexander L. Efros, David J. Lockwood, and Leonid Tsybeskov

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

Contributors

- A. Beck, Institute of Isotope and Surface Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
- H.Bönnemann, Max-Planck-Institut for Kohlenforsching, Mulheim an der Ruhr, Germany
- D.L. Boxall, Vanderbilt University, Nashville, Tennessee
- K.M. Bulanin, University of Delaware, Newark, Delaware
- J.S. Chang, Korea Research Institute of Chemical Technology, Daejeon, Korea
- C.L. Chen, Nanjing University of Technology, Nanjing, China
- J.G. Chen, University of Delaware, Newark, Delaware
- J.H. Clark, University of York, United Kingdom
- D. Chu, U.S. Army Research Laboratory, Adelphi, MD
- J.D. Corn, Vanderbilt University, Nashville, Tennessee
- G.A. Deluga, University of Minnesota, Minneapolis, Minnesota
- A. Ecormier, University of Hull, Hull, United Kingdom
- J. Geng, University of Cambridge, United Kingdom
- A. Ghosh, National Chemical Laboratory, Pune, India
- J. Grunes, University of California, Berkeley, California; Lawrence Berkeley National Lab., Berkeley, California
- L. Guczi, Institute of Isotope and Surface Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
- T. Guo, University of California, Davis, California
- J.F. Haw, University of Southern California, Los Angeles, California
- L. Han, State University of New York at Binghamton, Binghamton, New York
- S. Hermans, University of Louvain, Louvain-la-Neuve, Belgium, University of Cambridge, Cambridge, United Kingdom
- A. Horváth, Institute of Isotope and Surface Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
- Y.K. Hwang, Korea Research Institute of Chemical Technology, Daejeon, Korea
- J.S. Hwang, Korea Research Institute of Chemical Technology, Daejeon, Korea
- S.H. Jhung, Korea Research Institute of Chemical Technology, Daejeon, Korea
- R. Jiang, U.S. Army Research Laboratory, Adelphi, Maryland
- B.F.G. Johnson, University of Cambridge, Cambridge, United Kingdom
- N. Kariuki, State University of New York at Binghamton, Binghamton, New York
- N.A. Khan, University of Delaware, Newark, Delaware
- T. Khimyak, University of Cambridge, Cambridge, United Kingdom
- D.S. Kim, Korea Research Institute of Chemical Technology, Daejeon, Korea
- W.D. King, Vanderbilt University, Nashville, Tennessee
- J.R. Kitchin, University of Delaware, Newark, Delaware

- E.A. Kenik, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- R. Kumar, National Chemical Laboratory, Pune, India
- A.F. Lee, University of Hull, Hull, United Kingdom
- W.Z. Li, Dalian Institute of Chemical Physics, Dalian, China
- C.M. Lukehart, Vanderbilt University, Nashville, Tennessee
- J. Luo, State University of New York at Binghamton, Binghamton, New York
- D.J. Macquarrie, University of York, York, United Kingdom
- M.M. Maye, State University of New York at Binghamton, Binghamton, New York
- D.M. Marcus, University of Southern California, Los Angeles, California
- E.Z. Min, Research Institute of Petroleum Processing, Beijing, China
- J.T. Moore, Vanderbilt University, Nashville, Tennessee
- C.Y. Mou, National University of Taiwan, Taipei, Taiwan
- X.H. Mu, Research Institute of Petroleum Processing, Beijing, China
- P. Mukherjee, National Chemical Laboratory, Pune, India
- L.E. Murillo, University of Delaware, Newark, Delaware
- K.S. Nagabhushana, Max-Planck-Institut for Kohlenforsching, Mulheim an der Ruhr, Germany
- S.E. Park, Korea Research Institute of Chemical Technology, Daejeon, Korea; Inha University, Incheon, Korea
- C.R. Patra, National Chemical Laboratory, Pune, India
- R. Raja, University of Cambridge, Cambridge, United Kingdom
- G. Sankar, Royal Institution of Great Britain, London, United Kingdom
- A. Sárkány, Institute of Isotope and Surface Chemistry, Hungarian Academy of Sciences, Budapest, Hungary
- M. Sastry, National Chemical Laboratory, Pune, India
- V. Schwartz, University of Delaware, Newark, Delaware
- **G.A. Somorjai**, University of California, Berkeley, California; Lawrence Berkeley National Lab., Berkeley, California
- S.Q. Song, Dalian Institute of Chemical Physics, Dalian, China
- E.S. Steigerwalt, Vanderbilt University, Nashville, Tennessee
- G.Q. Sun, Dalian Institute of Chemical Physics, Dalian, China
- **J.M. Thomas**, Royal Institution of Great Britain, London, United Kingdom; University of Cambridge, Cambridge, United Kingdom
- Y.R. Wang, Research Institute of Petroleum Processing, Beijing, China
- Z. Wei, Dalian Institute of Chemical Physics, Dalian, China
- K. Wilson, University of York, York, United Kingdom
- Q. Xin, Dalian Institute of Chemical Physics, Dalian, China
- C.J. Zhong, State University of New York at Binghamton, Binghamton, New York
- B. Zhou, Headwaters NanoKinetix, Lawrenceville, New Jersey
- W.J. Zhou, Dalian Institute of Chemical Physics, Dalian, China
- Z.H. Zhou, Dalian Institute of Chemical Physics, Dalian, China
- J. Zhu, University of California, Berkeley, California; Lawrence Berkeley National Lab., Berkeley, California

Preface

Catalysts, heterogeneous, homogeneous and enzyme, are usually nanoparticles. These are of vital for the functioning of the human body, for photosynthesis, and for producing fuels and chemicals in the petroleum and chemical industries. Interest in nanoscience and in nanotechnology in recent years focused attention on the opportunity to develop catalysts that exhibit 100% selectivity for a desired product, thus removing byproducts and eliminating waste. This type of selective process is often called green chemistry or green technology.

This book is mainly based on the first and second symposia on Nanotechnology in Catalysis which were held in spring 2001 at the ACS 221st National Meeting in San Diego, CA, and in fall 2002 at the ACS 224th National Meeting in Boston, MA, respectively. We also extended our invitation to those who did not attend the meetings to contribute chapters where we saw a need to round out the scope of the topic. All chapters were peer-reviewed prior to final acceptance. We believe that the additional chapters and the peer-review significantly improved the quality of the book.

In the summer of 2000 when we first proposed to organize a symposium on Nanotechnology in Catalysis to the ACS Secretariat of Catalysis and Surface Science (CATL), we received strong support from Dr. Nancy B. Jackson, then General Secretary of CATL. The symposium was enthusiastically received by the catalysis community. On the first day of the symposium, the conference room could not hold all the attendees. People were standing behind the last row of chairs or at the door to listen to the speakers.

Nanotechnology has become an important area globally. US Government spending on nanotechnology over the last two years is estimated at \$2 billion. In The United States, legislation passed by the House of Representatives in April 2003 authorized \$2.135 billion in federal research money for nanotechnology research and development over the next 3 years (Nano/Bio Convergence News, Vol.1, No.9, May 2003). The National Science Foundation (NSF) forecasts that the market value of nano products and services will reach \$1 trillion by 2015 (NSF: Societal Implications of nanoscience and nanotechnology, March 2001). Similarly, the European Commission proposal for the 6th Framework Programme (2002 - 2006) contains a strong focus on nanotechnology. Out of a total proposed funding of 17.5 € billion, 1.3 € billion would be devoted to "a priority thematic area of research on nanotechnology, knowledge-based materials and new industrial processes" (source: www.cordis.lu, website of the European Commission).

Catalysis research and catalyst-based technologies have been at the heart of nanotechnology for many years. Nanotechnology is about manipulating and making materials at the atomic and molecular level. The development of supported noble metal catalysts in the 1950s aimed at reducing costs for large commercial applications resulted in catalysts with noble metal particle of sizes less than 10 nm, which by today's standard are nanomaterials. Zeolite catalysts, discovered in the late 1960s, are another example. By deliberate design and preparation of the catalyst structure at the atomic and molecular level, researchers at Mobil Oil Co. were able to synthesize zeolites such as ZSM-5, a nanostructured crystalline material with a 10-atom ring and pore size of 0.45-0.6 nm,

PREFACE

enabling the control of selectivity for petrochemical processes at a molecular level. Such nanomaterial catalysts revolutionized the petrochemical industry. Today, zeolite catalysts are used in processing over 7 billion barrels of petroleum and also many chemicals annually.

Research and development in the catalysis field have been in the nanometer scale since then. Recent developments of modern tools to characterize materials in nano or subnano scale provide insight for understanding and improving the existing catalysts, and clues for designing new nanomaterials for better catalysts.

The papers of this book reflect some of the frontier areas of nanoscience and nanotechnology to fabricate and characterize catalysts and carry out reaction studies to prove their selectivity and activity. This field of application of nanotechnology for the development of green catalysts is likely to grow rapidly during the next decade. This book hopes to contribute to the evolution of nanotechnology in this direction. The book is also a summary of updated advances and breakthroughs achieved worldwide by researchers in nanotechnology in the catalysis area. It is a difficult task to cover all aspects of such a dynamic research area. Also, there is no clear cut way to assign each contribution to well-defined topics. However, to facilitate comprehension of the advances in the field, the papers are organized into the following five sections.

Section I provides an overview of the fundamental understanding of catalysis and nanoscience. The evolution of the field of catalysis and its relation to nanoscience and nanotechnology are discussed. The authors describe the fabrication of 2- and 3-dimensional nanoparticle catalysts with controlled structures using electron beam and photo-lithography, providing the insight for possible catalyst fabrication in the 21st Century.

Section II focuses on nanoparticle and nanocluster catalysts. In this section, Chapters 2 to 6 describe the recent developments in synthesis and characterization of nanoparticle or nanocluster catalysts. Chapters 7 and 8 discuss the use of nanoparticle catalysts to grow carbon nanomaterials. The last part of this section (Chapters 9, 10 and 11) is devoted to noble metal nanoparticle materials as electrocatalysts, which are of vital importance for energy generation by fuel cells in the future.

Section III summarizes the recent advances in nanoporous materials as catalysts or catalytic supports. By controlling the structure of such materials at the atomic and molecular level, shape-selective and regio-specific catalysts are developed. The exceptional high selectivity of such nanoporous materials toward specific desired products has a potential to reduce or eliminate waste production. The chapters in this section provide clues for the new generation catalysts of the 21st Century, which may lead to green chemistry or green technology.

Section IV concentrates on the characterization and understanding of nanostructured catalysts and their properties by using modern tools and recently developed theories. Chapters 18 and 19 present how to use advanced and high-resolution electron microscopy to obtain detailed structural information at the nano-scale for catalyst development. New concepts and theories of characterization and understanding of heterogeneous catalysis at the nano-scale are discussed in Chapter 20 to 22.

Section V presents three examples of new nanomaterials as catalysts or supports. Researchers from the Dow Chemical Company explore the use of nanoscale dendrimers as hydroformylation catalysts. A study from Philip Morris examines the catalytic effect of nanoparticle iron oxide on carbon monoxide and biomass compounds. And finally, a

PREFACE ix

paper from the Dalian Institute of Chemical Physics in China discusses the use of graphitic nanofilaments as a superior catalyst support for ammonia synthesis.

In the spring of 2002 when we discussed the organization of the second symposium on Nanotechnology in Catalysis at the Catalysis Society of Metropolitan New York, both Professor Israel Wachs from Lehigh University and Dr. Gary McVicker from ExxonMobil noted that catalysis is an area that has moved one-step ahead of other areas in nanotechnology development. We are currently studying the catalyst materials at a subnanometer level. This provides an insight for how far we have advanced in the metered scale in catalysis. We have passed the nanometer level!

The first and second symposia on Nanotechnology in Catalysis were successful. We believe that their success and popularity are reflected in this book, which provides information on what has been done, and hopefully, an insight into what may happen in the future.

Gabor A. Somorjai Bing Zhou Sophie Hermans

Acknowledegments

We are grateful to many people who have assisted and supported us in so many ways during the editing of this book. Without their involvement, the book would not have reached readers.

The suggestion from Dr. Kenneth Howell, Senior Editor at Kluwer Academic/Plenum Publishers, to publish the symposia on Nanotechnology in Catalysis as a book was a pleasant surprise to us. His initiation, dedication and persistence over last year helped us to overcome many obstacles and made the book project possible. His guidance on many detailed and time-consuming issues of the book was precise and led us through the difficult times. The vision of Kluwer Academic/Plenum Publishers in promoting science and technology is also acknowledged wholeheartedly.

The authors of each chapter in this book are acknowledged for their due diligence. Their contribution was essential to obtaining a high quality book. Many of the chapters have updated summaries of recent breakthroughs and developments made by the authors. We wish to thank all of them for their patience and persistence during the editorial process, which was a tedious and time-consuming task. They did an excellent job cooperating with the editors in a timely manner.

All chapters in the book have received extensive examination by a review committee. We are grateful to all the reviewers who contributed significantly in improving the quality of the book. Their contributions were not limited to critical comments on scientific content but also provided constructive and thoughtful suggestions. The discussions between authors and reviewers in some cases were intensive and intriguing. The review committee members are listed in the next pages. We highly appreciated their contributions and efforts to examine each chapter.

Our sincere and deep gratitude goes to many of our colleagues, associates and assistants for helping us in editing the book in time. In particular, Bing Zhou would like to thank his colleagues at Headwaters Technology Innovation Group, including Kelly Repoley, Rebecca Groenendaal, Patricia Livingstone, Jen Stone, Michael Elwell, Michael Rueter, Robert Stalzer, Rober Chang, and Sukesh Parasher. Sophie Hermans expresses her acknowledgements to Professor Michel Devillers for his support and patience throughout the realisation of this project, to Jacqueline Boniver for her secretarial assistance, and, most of all, to Benoît Poncin for his endless help and encouragement.

ACS Secretariat of Surface Science and Catalysis (CATL) was the principal sponsor of the symposia on Nanotechnology in Catalysis. We want to thank Dr. Nancy B. Jackson, Dr. Lisa S. Baugh, and Dr. David Bergbreiter, General Secretaries of CATL in 2000, 2001, and 2002 respectively, for their support and their encouragement to start and continue these symposia. Acknowledgements are also due to the ACS Divisions of Colloid, Petroleum, and Industrial & Engineering Chemistry for co-sponsoring the symposia. Financial support from the ACS Petroleum Research Fund and the Division of Colloid Chemistry is highly appreciated.

Pars Environmental Inc., a company located in Robbinsville, New Jersey also provided financial support for the first symposium. Bing Zhou would like to thank Dr.

Harch Gill, Chief Executive Officer, and Dr. Chiang Tai for their interest and involvement in promoting applications of nanocatalysts in environmental protection.

Review Committee

Richard T. Baker University of Dundee Dundee, United Kingdom

Dominique C. Bazin Paris XI University Orsay, France

Jingguang G. Chen University of Delaware Newark, Delaware

Paul A. Christensen University of Newcastle upon Tyne Newcastle, United Kingdom

Thomas F. Degnan, Jr. Exxon Mobil Research & Engineering Company Annandale, New Jersey

Krijn P. de Jong Utrecht University Utrecht, The Netherlands

Junfeng Geng University of Cambridge Cambridge, United Kingdom

Malcolm L.H. Green University of Oxford Oxford, United Kingdom

Ting Guo University of California Davis, California

James F. Haw University of Southern California Los Angeles, California Sophie Hermans Catholic University of Louvain Louvain-la-Neuve, Belgium

Challa S. S. R. Kumar Lousiana State University Baton Rouge, Louisiana

Rajiv Kumar National Chemical Laboratory Pune, India

Jingyue Liu Monsanto Company St. Louis, Missouri

Charles M. Lukehart Vanderbilt University Nashville, Tennessee

Bill McCarroll Rider University Lawrenceville, New Jersey

Chung-yuan Mou National Taiwan University Taipei, Taiwan

Martin Muhler der Ruhr-Universität Bochum Bochum, Germany

Janos B. Nagy Facultes Universitaires Notre-Dame de la Paix Namur, Belgium

Radha Narayanan Georgia Institute of Technology Atlanta, Georgia

Sang-Eon Park Korea Research Institute of Chemical Technology Taejon, Korea

Gabor A. Somorjai University of California Berkeley, California James C. Vartuli ExxonMobil Research & Engineering Company Annandale, New Jersey

Karen Wilson University of York York, United Kingdom

Chuan-Jian Zhong State University of New York Binghamton, New York

Bing Zhou Headwaters NanoKinetix, Inc. Lawrenceville, New Jersey

Nanotechnology in Catalysis *Volume 1*

Index

Aberration correctors, 404	Adsorption (cont.)	Alkanoic acids, 255
Aberrations, 408	dissociative, 21, 111, 485	Alkanols, 255
AB ₂ O ₄ spinal oxides, 436	ethanol, 98	Alkene metathesis, 455
Absorption edge, 429	N ₂ , 122	Alkenes, 249, 270
Absorption spectra, 431	NO, 438, 439	Alkyl chains, 101
Acetaldehyde, 98, 198, 530	pyridine, 322	Alkyl hydroperoxides, 250
Acetic acid, 198, 249, 264, 356,	shape selective, 340	Alkyl stretching, 450
516	sol, 95	Alkylamine, 128
Acetic anhydride, 348	Adsorption equilibrium, 87	Alkylation, 9, 277, 318
Acetone, 56, 409	Adsorption layer, 87, 93	Alkylboranes, 250
Acetonitrile, 258	Advanced electron microscopy,	Alkylidene Re-complex, 452
1-Acetyl-2-methoxynaphthalene	363	Alkylperoxyl radicals, 258
(1,2-AMN), 355	Aerobic oxidation, 249, 264,	Alloy nanoparticles, 376, 386;
2-Acetyl-6-methoxynaphthalene	265	see also Gold and alloy
(2,6-AMN), 355	Aerobic oxyfunctionalization,	
Acetylacetonate, 504	270	nanoparticles
Acetylene, 18, 90, 97, 165, 174	Ag 4d band, 482	Alloys, 22, 201, 459; see also
Acetylene-propene mixture, 86	Ag nanoclusters, 227	Gold and alloy
Acid-base catalysis, 315		-Al ₂ O ₃ , 347
Acid-base catalysts, 8	Ag/SiO ₂ /Si(100), 476	γ-Al ₂ O ₃ , 19, 313, 438
	Agglomerates, 410	Alumina, 56, 153, 175, 363, 374,
Acid sites, 275, 355	Agglomeration, 39, 44, 52–54,	385, 434, 448, 453, 544
Acrolein, 367, 530	116, 160, 163, 175, 202,	polycrystalline, 389
Acrylic acid, 66	238, 353, 362, 394	α-Alumina, 227
Acrylic groups, 503	Aggregated gels, 332	γ-Alumina, 2, 376
Acrylic moiety, 501	Aggregates, 334, 427, 428, 472	Alumina binders, 383
Actinides, 448	Aggregation, 56, 84, 93, 106,	γ-Alumina crystallites, 2
Activated carbon (AC), 544	128, 167, 188, 221, 228,	Alumina-supported Pt, 389
Activated carbon (AC) supports,	346, 383, 385, 506	Aluminophosphate microporous
547	AIPOs: see Aluminophosphates	solids, 270, 274
Activation, 359	Alcohols, 85, 250, 409	Aluminophosphates (AIPOs),
Activation energy, 527, 552	Alcoholysis, 449	251; see also CoAIPO
Active carbon, 313	Aldehydes, 255, 262, 498	AIPO-18, 258
Acyclic alkanes, 455	Alicyclic hydrocarbons, 250	AIPO-36, 258
Acylation, 348, 355, 359	Alignment, 411	Aluminosilicate gels, 346
Adamantane, 250	Alkane transformation, 448	Aluminosilicates, 258, 273
Adhesion energies, 397	Alkanes, 249, 273, 315, 325,	amorphous, 314
Adipic acid, 253, 255, 270	409	mesoporus, 112, 314
Adsorption, 94, 174, 379	branched, 318	Aluminum chloride, 355
benzene, 102	cyclic, 250, 270	Aluminum oxide, 521
chemical, 224	linear, 275	Aluminum phosphates, 330
CO, 99, 198, 224	Alkanethiols, 119, 125	Amide, 503, 510
		,,

xxxii Index

Amino, 510	Atomic radius, 211	BH ₄ ⁻ , 56
Amino groups, 501	Atomic resolution, 365, 366,	Bifunctional catalytic
Aminophosphite, 500	374, 378, 391, 392	conversions, 271
Aminopropyl carbon, 119	Atomic resolution electron	Bifunctional catalytic
Ammonia, 165, 355, 543	microscopy, 364–365	mechanism, 222
synthesis, 5, 138, 543, 553	Atomic resolution environmental	Bifunctional nanoparticle
Ammoximation, 270	electron microscopy, 390	catalysts, 223
Amorphous aluminosilicates,	Atomic-scale resolution, 387,	Bifunctional nanopore catalyst,
314	404	267
Amorphous carbon, 137, 171	Atomic scales, 378, 390, 403	Bimetallic catalysts, 17, 56, 67,
Amorphous silica, 112, 315, 448	Atomic sensitivity factors, 479	137, 145, 375, 376, 391, 460
Amorphous structure, 450	Atomic steps, 371	
Analytical electron microscopy,	Atomic structure, 159, 209, 363,	heterogeneous, 33 Bimetallic clusters, 430
392	367, 390 Au 5d valence band, 488	Bimetallic colloids, 60, 68
Anchoring, 84, 313, 498 Angstrom scale, 510	Au/FeO _v /SiO ₂ /Si(100), 485	Bimetallic nanoclusters, 55
Anhydrous phase, 526	Au nanoparticles, 240	Bimetallic nanoparticles (bi-
Anionic polyimide component,	Au/TiO ₂ (110), 484	MNPs), 34, 42, 46, 55,
93	Auger-electron spectroscopy	60, 137, 149, 240, 380
Anionic surfactant, 93	(AES), 18, 468	Bimetallic particles, 68
Annealing, 487, 515, 526	Auger electrons, 365, 384, 386	Bimetallic precursors, 67
Anode catalysts, 74, 183, 201,	Auger lines, 479	Bimetallic surface
202	Auger microscopy, scanning,	nanostructures, 18
Anodic current, 239	385	Bimetallic surfaces, 20
Anomalous Wide Angle X-ray	AuPt, 240	Binary catalysts, 150, 201
Scattering (AWAXS),	AuPt alloy, 241	Binary nanoparticle catalysts,
427	Automobile catalytic converters,	145
Antiferromagnetic metal colloid,	436	Binary nanoparticle system, 242
58	Automotive catalyst, 412	Binding energy (BE), 21, 125,
Apatite, 522	Automotive exhaust control, 436	192, 213, 363, 478
Arc-discharge method, 159	Automotive exhausts, 515	Biologic nanotechnology, 497
Aromatic hydrogenation, 35	Autoxidation, 258	Biomass, 516, 530
Aromatic ketones, 355	Average coordination number,	combustion, 515
Aromatic rings, 276, 538	429	constituents, 530
Aromatics, 5, 249, 270, 273,	D tumo sites 549	decomposition, 532, 541
355, 503	B ₅ -type sites, 548	Biomass compounds, 519 Biomass systems, 530
Associative chemicarption 470	Backscattered electron (BE) detector, high-sensitivity,	Biopolymer pyrolysis, 530
Associative chemisorption, 470 Asymmetric epoxidation, 454	389	2,2'-Bipyrimidine ligand, 204
Asymmetric reactions, 498	Backscattered electrons (BEs),	Bis-allyl ligand, 205
Atom economy, 498	365, 386	Bombarding beams, 469
Atomic arrangements, 146, 224,	Baeyer-Villiger oxidation, 249,	Bond distances, 37, 147, 451
372, 378	262, 270	Bondlength, 525
Atomic columns, 367, 408	Band structure, 414	Bound moiety, 462
Atomic coordination, 393	Barton challenge, 255	Bragg diffraction, 406
Atomic force microscope, 11	Beckmann rearrangement, 266,	Bragg reflection, 124, 131
Atomic force microscopy	270	Branched alkanes, 318
(AFM), 224, 363, 366,	Benzaldehyde, 262, 263	Bright field (BF), 36
468	Benzene, 23, 28, 69, 90	Bromine, 264
Atomic layers, 485	adsorption, 102	Bronsted acid sites, 267, 322, 351
Atomic level, 372, 373, 427,	hydrogenation, 86, 101	Butane isomerization, 322
468	Benzoic acid, 46	Butanoic acid, 68
Atomic monolayers, 374	Bernalite (Fe(OH) ₃), 520	Butene isomerization, 289
Atomic number, 368, 374	Beryl-type crystal morphology,	Butenes, 498
Atomic positions, 408	420	Butyl ligands, 459