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1
HISTORICAL INTRODUCTION

1. General introduction

Most students begin real variable theory with the differential
calculus, proceeding to the integral as the inverse of the
derivative. In essentials they use the ideas of Newton and
Leibnitz. Some never go beyond this stage; much is done in
physics and applied mathematics by using this alone, without
recourse to more modern ideas. However, it is becoming
increasingly clear to scientists in general, and particularly to
those interested in statistics, statistical physics and quantum
theory, that such a limitation of the pure mathematies is a
restriction, and that the use of better integration tools will
result in a greater ease of application. The mathematician
or scientist who wishes to go beyond the Newtonian inverse of
a derivative could advantageously take for his tools the two
new and equivalent integrals of this book. He will find that
the usual theorems follow. In particular,

(i) the integral is additive in the functions to be inte-
grated, and in the intervals in which they are inte-
grated (Theorem 19.1, p. 27; Theorem 21.1, p. 31);

(ii) if the convergent sequence {fx(z)}is bounded by M
independent of n and x, and if each f,(x) is integrable,
then

* lim folz) dz = lim ’ falz)

a n-+xo n->o0
(special case of Theorem 37.1, p. 85);

(iii) if in (ii), fa(x) is the sum of gp(x) form =1, 2,.. ., n,
then

b o ® b
Dgmx)dr =2 | gmlx) dx

a m=1 m=1J a

_od =
(iv) = f £(8) dt = fiz)
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at almost all points « (special case of Theorem 35.1,

p- 78);
(v) if, for each y, Y, f(z, y) is integrable and

where M is independent of z, y, Y, then

d g ? of(z y)
d—yfaf"”'y’d”‘f,, o

(special case of Theorem 37.3, p. 88).

The theory is developed from the beginning, and only a
knowledge of real and complex numbers is assumed. However,
a familiarity with the e, 3 technique would be an advantage.

The ordinary student is advised to omit all sections that
are starred, and also Chapter 8. These topics are intended for
the more mature student who is acquainted with the Lebesgue
integral at least. To him it may be pointed out that the very
elegance and apparent finality of Lebesgue theory has caused
mathematical inventiveness to move to other fields. Because
of the Riesz representation theorem the integral has been
regarded as nothing more than a linear functional. But inte-
gration is far more than this, as the present book partially
shows. Further, there is no longer any necessity for considering
separately the Riemann, Riemann—Stieltjes, Burkill, Pollard-
Getchell, Lebesgue, Radon, special Denjoy, Perron and Ward
integrals, for all these are included in the Riemann-complete
and variational integrals of this book. Measure theory is not
needed at the beginning, and the measure properties that are
required later are obtained in a far simpler way than usual.
Contrary to the general view, complete additivity of the
measure is not required in order that we should have theorems
of Lebesgue type; here we find that finite additivity is enough.
In particular, Fatou's lemma is still valid, so that the Riesz—
Fischer theorem and the completeness of L? spaces follow
as usual. For the latter see Chapter 9, in which we extend the
integral to functions with values in linear topological spaces.
We omit all integrals using convergence factors, and for these
we refer to the literature (Henstock, (1960b, c¢; 1961a, b)).
For simplicity we also restrict the functions to be functions
of points or intervals on the real axis, or of points or rectangles
on the plane. The n-dimensional case is a straightforward



§1] HISTORICAL INTRODUCTION 3

generalization, and the extension to an abstract space is
given in Henstock (1961a, b).

But it is not advisable to restrict ourselves entirely to pure
mathematics. There iz ample precedent for a pure mathe-
matician to consider in detail some applications to statistics
(Chapter 10). This chapter is bound to be inconclusive and
to leave much unsaid because of limitation of space, so that
I have made an arbitrary selection of topics that illustrate
the main theory. The Central Limit and allied theorems are
adequately covered in other books, and so are omitted.

The first chapter is divided into two, because of the re-
quirements of two kinds of reader. The beginner can read
Sections 2 to 4 and then proceed to Chapter 2. The remaining
sections are for the notice of the integration student who has
already dealt with Lebesgue integration at least, to explain
the relations between the néw integrals and the old. We give
& very brief summary of the position of integration theory
up to, say, 1958. Because of the brevity many illustrious
names have to be omitted, and we concentrate on generaliza-
tions suitable for problems in trigonometric series.

2. Areas, and the differential and integral calculus

In the simplest case the process of integration is the adding
together of areas of non-overlapping elementary figures, and
then the taking of some kind of a limit. The Greeks computed
many simple areas, the methods being systematized through
the years, and culminating in the method of exhaustions of
Eudoxus (¢.408-355 B.c.) and Archimedes (c.287-212 B.C.).
This method was the first crude limit process, and they used
the geometry of the figures to fit a sequence of non-overlapping
triangles inside each main figure that finally exhausts the area.
By this means they found the areas of the circle and sections
of parabolas, for example, but could not define a general non-
negative polynomial, and so could not compute the ares
under its curve.

The second approach to integration lies in inverting the
result of differentiating a known function. The operation of
differentiation was first systematized by I. Newton (1642
1727) and G. W. Leibnitz (1646-1716). To each of a certain
class of functions f for which the derivative Df = df/dx
exists, say, for x in @ < < b, we make correspond that
derivative, so that we can regard D as an operator. It obeys
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the following rules. If f, g are differentiable functions of z
ina <z <b, and if «, B are constants, then in a <z < &

we have
D(af+Bg) = «Df+BDg (2.1)
D(fg) = (Dfig +f(Dg) (2.2)
D{f(g(x))} = (df/dg)Dg (2.3)
Da =0 (2.49)

The rule for division is obtained from (2.2); if f = h/yg

then :
- Dh = (Df)g+ f(Dg)
D(h/g) = Df = {Dh—(h/g)Dg}/g

A function H of points z 48 an indefinite Newton integral
of a known finite function fin ¢ € ® < b, if DH = f in that
interval. The functions that Newton integrated are all con-
tinuous, but we can ignore that limitation. Then the definite
Newton integral in a < « < b is H(b)y—H(a). We can write H
as

. b
H = D1if = (NL)ffdx, H(b)~H(a) = (NL) f fdx
a
where NL stands for Newton—Leibnitz. This definition of the
integral is descriptive. No method of construction is offered,
but we are given its properties so that we can recognize it if
it is produced in another way. Because of this we have to

prove that if H and H; are both indefinite Newton integrals
of the same function fin ¢ < « < b, then

H(b)— H(a) = H(b)— Hi(a) (2.5)
To prove (2.5) we note that by (2.1)
D(H—Hy) =f—~f=0

so that in particular H — Hj is continuous, and then the mean
value theorem gives (2.5).
From (2.1) we obtain the distributivity of the Newton

integral, namely,
D~Y(af+Bg) = aD"Yf+BD" g (2.6)
From (2.2; 2.6) we have the formula for integration by parts,
D-YgDf)+ D~YfDg) = fg

(NL) f (——) dr = fg—(NL) f (g—dii) dv  (2.7)
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From (2.3) we have

df d
ot = 1) [ 5 i PN

and replacing df/dg by f1,
d
(NL) f filg) dg = (NL) f fi g ds (2.8)

the formula for integration by substitution.

When we have defined more general integrals we will see
that the formulae (2.5; 2.6; 2.7; 2.8) are in some sense still
true for them.

The integration of a polynomial in x is now easy, but some
simple funetions cannot be integrated. It can be proved that
if DH exists in a < z < b, and if y is & number between
H'’(a) and H’(b), then there is a £ in a¢ € ¢ < b such that
H'(£) = y. It follows that if f is zero for x less than }(a-b),
and is 1 otherwise, then f does not have a Newton integral
ine<z<hb.

3. Riemann, Riemann-Stieltjes and Burkill integration

G. F. B. Riemann (1826-66) gave the following definition of
the definite integral of a function finae < = < 4. Let

a=2) <21 <..<xp =250 (3.1)

be a division of ¢ < x < b into smaller intervals, let £ be a
point of the interval 2;_1 < = < 23, and consider the sum

n
8 =X flé))xg—x41) (3.2)
J=1
The number I is the definite Riemann integralof fina < z < b,
if to each € > 0 thereis a 8 > 0 such that
S=I <e (3.3)
whenever

1€y <zi14+d (j=1,2,...,n) (3.4)

J. G. Darboux (1842-1917) made the followmg modifica-
tion when f is real. He replaced f(¢;) by the supremum (least
upper bound) of f in x;1 < ¢ < x3, and obtained an upper
sum. For a lower sum he replaced f(£;) by the infimum
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(greatest lower bound) of f in a1 < x < 5. If f is non-
negative, with a given graph, and if we take a division (3.1)
of @ < =z < b, then the upper Darboux sum is the sum of the
areas of rectangles with bases the intervals x;1 < x < =y,
and with just sufficient height to include the graph. The
lower Darboux sum is the sum of the areas of rectangles with
the same bases, but lying just below the graph. When f is
real it is clear that for suitable choice of the £;, the S of (3.2)
can be taken arbitrarily near to the upper sum, and for another
choice, arbitrarily near to the lower sum, so that the Darboux
modification does not alter the Riemann integral of a real
function. Thus if a real function has a Riemann integral in
a < z < b it must be bounded there, From this we can show
that not every Newton integral is a Riemann integral. For

H(x) = 2 sin(1/22) (z # 0), H(0) = 0 (3.5)

is differentiable everywhere, the derivative being unbounded
in the neighbourhood of z = 0. However, not every Riemann
integral is a Newton integral, for the Riemann integral of the
last function of Section 2 exists in ¢ < z < b, and is equal to
#(b—a). There is a common region, for the Riemann and
Newton integrals of a continuous function exist and are
equal. The Riemann integral cannot integrate every bounded
function, for if

I (= rational)

= 3.6
0 (z irrational) (3.6)

f(x)
then any upper Darboux sum is b—a, while any lower Dar-
boux sum is 0. Thus f does not have a Riemann integral
(nor a Newton integral).

The Riemann method has been modified in many ways.
T. J. Stieltjes (1856-94) used another function g, replacing
xj—1xy-1 in (3.2) by

g(xs)—g(xs—1)
The resulting integral is now called the Riemann—Stieltjes
tntegral. J. C. Burkill replaced f(&;)(zj—x5-1) in (3.2) by a
funetion h(xj-1, z;) of the interval from zy_; to x;, obtaining
the Burkill integral. It is clear that the Riemann, Riemann—
Stieltjes and Burkill integrals are constructive when they
exist. For we can construct the definite integral I by finding
the limit of sums (3.2) for Riemann integrals, or the corres-
ponding sums for the other integrals, for special sequences
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of divisions (3.1) and special choices of the £, e.g. we can take
¢ =z = a+(b—a)j/2® for j=0,12,..,2% and n = 1,2,..

4. A new approach to Newton’s and Riemann’s integrals

Newton’s definite integral can be written as a simple example
of the kinds of integrals that we wish to study. Let H be the
Newton indefinite integral of a finite function fina < = < b.
Then DH = f there. Thus, given ¢ >0, there is a & >0,
depending on e and #, such that for 0 < |t—z| < 3,

H(t)—-H(z)

t—2
|H(t) — H(z) ~ f(z)(t—=)| < elt—z] (4.1)
Here, all intervals from ¢ to x, where either z—8 <t <& or
x <t < z+9, have this property. Suppose that from these
intervals we can construct a division (3.1) of a < 2 < b.

Then for ¢; equal to one or other of @1, x;, we use (4.1) and
obtain

_f(x) < €,

{H®)—H(a)— Z fié)xs—zs1)l
-1

n
= | X {H(zs)— H(zs-1) = f(€))(ws—25-1)}]
=1
n
< X |Hzs)— H(ws1) —f(§)) (s —421))|
J=1
n
< 2 ezy—x4-1) = e(b—a) (3.2)
=1
showing that for the special £; and special divisions, the sum
(3.2) tends to H(b)—H(a) as € — 0. Thus if the construction
of divisions is possible, Newton’s integral has a definition as
an integral of Riemann type. In Chapter 2 we show that the
construction is in fact possible. Further, the interval functions
J(ENzg—2x5-1) are of two types,

f@-1)@s—25-1),  flaeg)(@g—25-1) (4.2)

right-hand and left-hand, where the §; is regarded as fixed,
while the other end of the interval lies in a certain neigh-
bourhood of §;.
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Again, in Riemann’s definition we use interval functions
JEN@s—as-1)(@s-1 < €5 < xy) (4.2)

If £; = =;-1 or x;, we again obtain an interval function (4.2).
If )1 < ¢ <z we put

SN ws—ms-1) = f(€5)(E5—w5-1) +f€5) (i — &)

a sum of the two kinds in (4.2). Similarly for the Riemann—
Stieltjes integral. There is no £; in Burkill integration, so
that it does not matter whether an interval is counted as
left-hand or right-hand, the % is the same.

This section gives us two ideas that are developed in Chapter
2; namely, the use of intervals from ¢ to z, for |t—=z] < §(x),
and the use of two interval functions, one ‘left-hand’ and one
‘right-hand’. The beginner can now proceed to Chapter 2.

The rest of Chapter 1 is designed for the student of integration
who wishes to connect his previous knowledge with the theory
of this book.

*5. The Pollard-Getchell integral

In Riemann—Stieltjes integration S. Pollard (1894-1945) and
B. C. Getchell modified (3.4), supposing that for each ¢ > 0,
there is a division

a=x <21’ <.. <;P =b (6.1)

with the property that if (3.1) is a subdivision of (5.1) and
x3-1 < & < oy for j = 1,2,...,n, then (3.3) is true. In this
case I is the Pollard-Getchell integral of f. See Pollard (1923),
Getchell (1935).

Every Riemann-Stieltjes integral is a Pollard—Getchell
integral, for we can ensure (3.4) by taking, in (5.1)

x,k_x,k-l < S(k = 1: 2,- ""p)

The Pollard-Getchell integral enables us sometimes to
integrate f with respect to g when f and g have common dis-
continuities and the Riemann-Stieltjes integral does not
exist. The Pollard—Getchell modification can be applied to the
Burkill integral, and a suitable construction of the divisions
(5.1) in this case are given in Henstock (1946 and 1948).
Clearly the Pollard—Getchell integral is constructive if suitable
divisions can be constructed.

The integrals of Sections 3 and 5 are of Riemann type and



