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PREFACE

Following the success of the 1st International Conference on Applications of
Artificial Intelligence in Engineering Problems held in Southampton U K. in
April 1986, the second meeting was held in Cambridge, Massachusetts,
U.S.A. in August 1987. This book contains a collection of the papers
presented at the Conference in the area of Knowledge Based Expert Systems
for classification, education and control.

The theme of the Conference and the selected papers was the application of
Artificial Intelligence technology in engineering. Engineering research and
development have provided powerful analytical and computational tools which
have revolutionised the way in which products can be designed, tested and
manufactured. However, engineering cannot be simply described by
numerical models and algorithms; it involves knowledge, reasoning, heuristics
and interpretation in addition to many other factors. Artificial Intelligence
technology is now emerging from the research laboratory and promises to
provide the same level of success as the numerical models have had with the
representation of physical systems.

The papers published represent only approximately half of the total number of
papers submitted for the Conference. The editors would like to express their
thanks to Professor J. Gero, Dr M. Tenenbaum and Dr R. Milne and also to
the International Advisory Board for their invaluable advice in the review and
selection of the papers. This thorough process we believe has significantly
added to the success of the Conference and the value of this book. Finally, we
would like to thank all the authors for their contributions.
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Qualitative Sketching of Parameterized Functions

E. Sacks '

Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139, U.S.A.

ABSTRACT

This paper describes a qualitative sketcher called Qs that draws families
of parameterized real univariate functions. It is useful because sketches
provide better insight into global behavior than verbal or other descrip-
tions. Existing graphics packages cannot plot parameterized functions
because they require exact numerical values. Also, they cannot recognize
discontinuities, singularities, and asymptotes or graph infinite domains.
Qs avoids these limitations by constructing and manipulating global mod-
els of functions. It can sketch functions that arise in pharmacokinetics,
probability theory, circuit analysis, and other domains.
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INTRODUCTION

This paper describes a qualitative sketcher called QS that draws families
of parameterized real univariate functions. Qualitative sketching focuses
on the high-level attributes of functions, such as extrema and disconti-
nuities, without specifying exact values at every point. At this level of
abstraction, a few sketches generally suffice to describe entire families of
parameterized functions. For example, the family f,(z) = e®* requires .
the three sketches shown in Figure 1, corresponding to a negative, zero,
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Figure 1: The qualitative sketches of e**

and positive. QS helps its users understand the global behavior of pa-
rameterized functions by generating all possible sketches.

Qs can plot a much wider class of functions than conventional graph-
ics packages. It handles parameterized functions with infinite domains
and unbounded values, whereas conventional plotting programs require
bounded numeric functions on finite domains. Also, QS explicitly recog-
nizes discontinuities, singularities, asymptotes, and periodicity. To sketch
a parameterized function with a conventional graphics package, one must
plot it for several values of each parameter and inspect the results for
possible asymptotes, discontinuities, and singularities. The user must
guarantee that his choices of specific parameter values generate all qual-
itatively distinct cases and that his choice of domain includes all inter-
esting behaviors. He must also decide what ranges of parameter values
produce the same abstract behavior. Sketching a parameterized function
with QS is equivalent to sketching all of its infinitely many instances and
collapsing the results into qualitatively equivalent sets.

The next section contains a brief overview of the mathematical rea-
soner that the sketcher uses. In the following two sections, I describe the
sketching algorithm and discuss applications in pharmacokinetics, proba-
bility theory, utility theory, and circuit analysis. The final section consists
of a summary, a discussion of related work, and proposed extensions.

THE MATHEMATICAL REASONER

The qualitative sketcher uses the QMR mathematical reasoner! to derive
the properties of parameterized functions. QMR handles a large class of
functions on the real numbers, including the eztended elementary func-
tions: polynomials and compositions of exponentials, logarithms, trigono-
metric functions, inverse trigonometric functions, absolute values, max-
ima, and minima. It infers their qualitative properties: signs of the
first and second derivatives, discontinuities, singularities, and asymptotes, ,
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which it records in data structures called Q-behaviors. For example, the
Q-behavior for the function (z — a)~! appears in Table 1.

Table 1: The Q-behavior of f(z) = (z —a)™!
f(®) (z-a)!

sign of f'(z) negative on (—oo,a) and (a, o)

sign of f”(x) negative on (—o0,a); positive on (a,o0) _

discontinuities f(a) undefined; lim f(z) = —o0; lim+ f(z) =00
singularities f'(a) undefined; lim fl(z) = —o0

QMR can either analyze simple functions from first principles of cal-
culus or match them against stored patterns. It analyzes complex func-
‘tions by recursively analyzing their constituents and combining the re-
sults. Three combination algorithms suffice because each complex func-
tion must consist of a sum, product, or functional composition of its con-
stituents. QMR may produce several alternate Q-behaviors, depending on
algebraic relations between parameters. For example, composing e* with
az produces a decreasing, constant, or increasing function, depending on
a’s sign, as shown in Figure 1. _

QMR invokes the BOUNDER inequality prover? to resolve inequali-
ties over sets of constraints. Given the constraint @ < b, for example,
BOUNDER can prove e* < e® and refute b — a < 0, but can neither prove
nor refute a? <_b2. It can also derive upper and lower bounds for sym-
bolic expressions over constraint sets. When BOUNDER pronounces an
inequality ambiguous, QMR constructs a Q-behavior for each possibility.
This strategy certainly derives all possible Q-behaviors for any input, but
may produce spurious ones as well. These arise when BOUNDER fails to
prove valid inequalities. This is a fundamentai limitation because no pro-
gram can prove all inequalities between arbitrary extended elementary
functions, as shown by Richardson.®> However, BOUNDER can handle all
the examples in this paper as well as many more complicated inequalities.

THE SKETCHING ALGORITHM

Qs sketches a function by invoking QMR to construct its Q-behaviors and
sketching each of them separately. It chooses a set of interesting points
for each Q-behavior, picks an appropriate scale, lays out the points on
the plane, and connects them with smooth curves. The interesting points
for a Q-behavior consist of its boundaries, extrema, inflection points,
discontinuities, singularities, and any additional points designated by the
user. QMR can infer every type of interesting point (except for user
designated ones) directly from Q-behaviors.
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Qualitative scales
A Qs scale is a function from symbolic expressions to real numbers that
preserves inequalities and bounds derivable by BOUNDER. Put symbol-

ically, if s is a scale, a and b expressions, and C a set of constraints
then

alb= s(a) < s(b) (1)
a b= s(a) < s(b) (2)
INFc(a) < s(a) < suPg(a) (3)

where a < bor a % b holds iff BOUNDER can deduce a < bor a < b from C
and INF¢(a) and SUP¢(a) denote BOUNDER'’s bounds on a given C. Since
a number is its own lower and upper bound, equation (3) implies that
scales map numbers to themselves. Scales also preserve linear relations
whenever possible, that is

a=mb+n=s(a)=m[s(b)]+n (4)

where z = y means that Qs can prove z equal to y, m and n denote num- "~
bers, and @ and b denote symbolic expressions. Equation (4) cannot be
strengthened by substituting = for = because equality between arbitrary
extended elementary functions is undecidable, as shown by Richardson.?
Nonetheless, the powerful MACSYMA algebraic simplifier,* which Qs uses,
recognizes all straightforward equalities and many more subtle ones. As
a special case, each scale maps —oco to a very small number and oo to
a very large number. These numbers satisfy equations (1) and (2), but
violate equations (3) and (4).

Equations (1-4) guarantee that scaling preserves known relations
between interesting points. Other relations between scaled values reflect
arbitrary decisions. For example, consider the Q-behavior of (z —a)(z—b)
with zeros at @ and b. When no constraints exist, Qs must arbitrarjly draw
a greater than b or b greater than a, even though either relation could
hold. Sketches cannot express partial orders.

Sketching

After choosing a scale for the interesting points {z1,...,Zn} of a behavior
and a scale for their images {f(z1),..., f(za)}, QS prints each z; at its
scaled location on the z axis and each f(z;) at its scaled location on the
y axis. However, it does not print large expressions because they would
obscure the sketch. It chooses a new label (z; for the independent variable
z and y; for the dependent variable), attaches it to the expression, and
prints it. Next, Qs fills in the sketch. All discontinuities, singularities,
extrema, and inflection points are interesting points, so the function must
be continuous, differentiable, monotone, and of fixed convexity on the
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intervals between them. This enables QS to capture the portion of a
function between adjacent interesting points with a smooth curve. Since
we are only interested in qualitative behavior, the exact path of the curve
is unimportant, as long as it has the correct end points and convexity. Qs
uses a modified cubic spline, but any curve with four degrees of freedom
would serve.

For the sake of brevity and clarity, the following discussion refers to
points even though the program manipulates their scaled values. Let p
and ¢ be two finite adjacent interesting points. If f is continuous at p and
¢, QS draws a smooth curve between the pairs (p, f(p)) and (g, f(gq)) with
initial derivative f’(p) and final derivative f'(¢). If f is discontinuous and
bounded at p or ¢, QS uses the left or right limit respectively in place of
the (possibly undefined) value. Similarly, it substitutes the left and right
derivatives for f’(p) and f’(q) at sharp points and cusps. An unbounded
discontinuity at p is asymptotic to the line £ = p. QS extends the sketch
to the top of the y axis when the limit is co and to the bottom when it
is —oo. It marks the asymptote with a dashed line. Infinite interesting
points are treated analogously to unbounded finite ones. QS extends the
sketch to the left end of the z axis for —oo and the right end for co. If
the limit is a finite number lim, it marks the asymptote y = lim with a
dashed line.

Figure 2 illustrates these ideas with two sketches. All constants are
declared positive in these examples and throughout the rest of the paper.
The left-hand figure contains the sketch of z3 — 3az; its interesting points
are: boundaries at +o0o, extrema at +./a, and an inflection point at 0.
The right-hand figure contains the sketch of Z=% with interesting points:
—00,4a,3a and co. The sketch includes (a,0) because zero crossings have
been designated interesting. There is a vertical asymptote at £ = 3a and
a horizontal one at y = 1.

All the functions discussed so far have a finite number of interesting
points. They are continuous and monotone for all sufficiently large and
small values. QMR can also represent periodic functions with infinitely
many extrema and discontinuities, although it cannot represent functions
with infinitely many extrema in a finite region, such as sinl/z. The
algorithm described thus far would fail on periodic functions, since it
could not lay out an infinite number of points. Instead Qs uses this basic
algorithm to sketch one period of the function, marks it with a broken
line, and prints its length. Figure 3 contains the sketches of sin(az) which
has a period of 27 /a and tan(az) which has a period of x/a. The tangent
has asymptotes at +x/2a indicated, as usual, by dashed lines.
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APPLICATIONS

Qualitative sketching applies to systems describable by univariate real
functions. These arise in many domains, including pharmacokinetics,
probability theory, utility theory, and circuit analysis.

Pharmacokinetics

Pharmacokinetics is the study of how drug concentrations vary over time
in the body. Wagner® (ch. 1-6) analyzes several pharmacokinetic models
and plots the results. In a typical example, reproduced in Figure 4a, he
plots the function

folf) = Toe )

for several specific values of the paramete:r p,. QS summarizes all the
instances of (5) in a single sketch, shown in Figure 4b. Unlike the nu-
meric plots, this sketch establishes that every instance of equation (5) has
the same form: each increases monotonically, passes through the origin,
approaches 1 asymptotically as f, increases toward oo, and is concave. In
this case, the QS sketch is too abstract to serve Wagner’s purpose, find-
ing combinations of f, and p, that produce specific fg values. He could
either use QS to sketch fg for specific numeric values of p,, or invoke the
QMR utility that calculates inverses.

pu>8
/& P, = 50 gk S 55 me

>fu

(b)
Figure 4: (a) Wagner’s graph of fr (b) The Qs sketch

Probability theory

Qualitative sketches can help probability theorists and statisticians de-
rive the properties of continuous probability distributions. For example,
Freund® (sec. 5.3) discusses the four important probability distributions
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that appear in Table 2 and constructs their qualitative sketches by hand.
Qs can sketch all four of them. The uniform distribution has a trivial
sketch consisting of a line segment, while the exponential distribution is
a scaled version of the left-hand sketch in Figure 1. Figure 5 reproduces
Freund’s sketch of the gamma distribution for several values of a and
b and Figure 6 shows the Qs version. This example demonstrates that
qualitative sketches can be more informative and general than multiple
numerical plots. Figure 7 contains the Qs sketch of the normal distribu-
tion.

Table 2: Four important probability distributions

uniform 3 ! on the interval [a, b] and 0 elsewhere
1
exponential -0—6"’”/0 for z > 0 and 0 elsewhere
' 1
gamma bar(a):c"'le"/b for z > 0 and 0 elsewhere
normal 1 e'%(';-m)2

(=)
1

Figure 5: Freund’s sketch of the gamma distribution -

Utility theory
Wellman? (chap. 3) uses QMR to analyze single-attribute utility functions

u(z) and their risk functions:
u"(z)
u'(z)

(6)

r(z) = —
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Figure 6: The Qs sketch of the ga,mma‘distribution

-»> X

Figure 7: The Qs sketch of the normal distribution
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The utility functions are extended elementary functions, as are their risk
functions. Figure 8 contains the sketch of a typical utility function:
u(z) = '~°. Other common utility functions that Qs can handle include
linear functions, exponentials, and logarithms. Wellman tested QMR on
all the examples and exercises appearing in the unidimensional utility
theory chapter of Keeney and Raiffa’s text® (chap. 4). It analyzed 17 out
of the 18 cases correctly, enabling QS to sketch them.

c>1 c=1 c<l c=0 c<®
., 1 ey x F>0 1 .

Figure 8: The Qs sketch of u(z) = 2'~¢

Circuit analysis

Graphic reasoning plays a significant role in circuit analysis. For example,
electrical engineers infer the characteristics of a linear system by sketch-
ing the magnitude and phase of its transfer function H(jw) against the
frequency w. The most common format, called a Bode plot, plots the
quantities 20log,q |H(jw)| and ZH(jw) in a logarithmic scale. QS can
sketech the Bode plot of any transfer function that it can factor, includ-
ing all numeric functions and many containing symbolic parameters. For
example, Figure 9 contains the magnitude plot of

(o Jjw—a
HOw) = 5 =2y Gw = 30) )

with a real and positive. The Bode plot of a symbolic transfer function
expresses the characteristics common to all its instances. Engineers can
observe them directly with Qs instead of plotting several instances and
generalizing the results.

CONCLUSIONS
This paper has described a qualitative sketcher for parameterized uni-

variate functions on the real numbers. Its sketches capture the significant
properties of functions better than verbal descriptions such as “f increases
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mag(w)
o~

Figure 9: The Bode plot of equation (7),

between 0 and 1” or mathematical descriptions such as lim,_.., f(z) = 2.
Qs can sketch any function that the QMR mathematical reasoner can an-
alyze. As the previous section illustrates, this class includes interesting
models from diverse fields. :

Qualitative sketching seems to be a new idea. The only related sys-
tem that I found appears in Kuipers.® His system plots the qualitative
values of a function at discrete qualitative time points and connects the
results with straight lines. It marks increasing values with an ascend-
ing arrow, decreasing values with a descending arrow and steady values
with a horizontal line. Although adequate for Kuipers’s purposes, this
algorithm ignores many important properties of functions, including con-
vexity, discontinuities, singularities, asymptotes, and periodicity.

Many interesting models, including most nonlinear ones, cannot be
solved in closed form. QS cannot sketch these models because QMR is
unable to construct their Q-behaviors. I am developing a new technique
called piecewise linear abstraction (PLA) for analyzing systems describ-
able by finite sets of ordinary differential equations. PLA constructs and
analyzes piecewise linear approximations of complicated models instead
of solving them directly. It uses a phase space representation to derive the
behavior of a piecewise linear system over its entire domain from its local
behavior on linear subregions. The resulting phase diagram provides ex-
tensive insight into the qualitative behavior of the system. For example,
Figure 10 contains the phase diagram for the system of equations

21| _ | —m O z ;
[z;]—[ 0 /\][22] with A, u >0 (8)

appearing in Brauer and Nohel!® (p. 172). It is clear from the figure



