ln ““Ix&)

ROD MANIS
EVAN:SGHAFFER
ROBERT JORGENSEN

UNIX®
Relational Database Management

Application Development
in the
UNIX Environment

Rod Manis
Evan Schaffer
Robert Jérgensen

W

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Number 87-36103

Cover design: Lundgren Graphics, Inc.
Manufacturing buyer: Mary Ann Gloriande

© 1988 by Rod Manis

This book was typeset by the authors. UNIX programs formatted the text and
printed the final copy. We acknowledge the special assistance of Barbara
Wright, who is responsible for the description of ve in Chapter 5.

Prentice Hall Software Series
Brian W. Kernighan, Advisor

The authors and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this book. The author
and publisher shall not be liable in any event for incidental or consequential damages in connec-
tion with, or arising out of, the furnishing, performance, or use of these programs.

The publisher offers discount on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing

College Technical and Reference Division
Prentice Hall

Englewood Cliffs, New Jersey 07632

/rdb and /act are trademarks of Rod Manis

/menu shell is a trademark of Schmidt Associates

Chiquita Banana is a trademark of United Brands

Ronald McDonald is a trademark of McDonalds

UNIX is a registered trademark of AT&T Bell Laboratories
ve is a trademark of Robinson Schaffer Wright

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN 0-13-938k22-X

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PrENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JaraN, INC., Tokyo

SIMON & SCHUSTER AsIA PTE. LID., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

UNIX®
Relational Database Management

N

YES—I'd like\rdb for my UNIX system

Cut out this form and fill Please send me pricing information for \rdb for my UNIX

in all necessary information. system. | understand that \rdb runs on a// UNIX based

Then enclose this form computers, miero to mainframe, and most UNIX derivitives
in an envelope and mail to: (XENIX, Microport System V/AT, 4.3 BSD, AlX, ULTRIX, etc.).

Prices for \rdb vary by size of system from $795 to $2,495.

Robinson Schaffer Wright - My computer is _ , it runs the following
711 California Street version of UNIX , and supports users.
Santa Cruz, CA 95060

(408) 429-6229

Name

Firm/Department

City State Zip
Daytime telephone number()

NOTE: Prices subject to change without notice.

YES—I'd like /rdb and/or MKS Toolkit for DOS
for my PC-DOS or MS-DOS system

The MKS Toolkit provides over 100 UNIX like commands and is required to take
advantage of /rdb in a DOS environment (version 2.0 and later releases).

3 _ Cut out this form and fill Please send the items checked below. PAYMENT ENCLOSED
{ in all necessary information. (check or money order only). Robinson Schaffer Wright
Then enclose this form with will pay all shipping and handling charges.
s, i your check or money order .
" only in an envelope and /rdb and MKS Toolkit for DOS—$275
mail to: /rdb for DOS only. | have MKS Toolkit—$139

MKS Toolkit for DOS only (I don’t need /rdb yet)—$139
California residents please add 7% sales tax

Robinson Schaffer Wright Name

711 California Street Firm/Department

Santa Cruz, CA 95060 City State Zip
(408) 429-6229 Daytime telephone number ()

NOTE: Prices subject to change without notice.

This book is dedicated to the people who have made
/rdb
possible

Thomas Arnow
Robert Berkley
Andy Chang
Michael J. Defazio
Steve Eberhart
Keith Eisenstark
Raymond Eisenstark
David Fiedler
Tom Johnson
Ray Jones
Brian Kernighan
Paul S. Kleppner
Mark Krieger
Gig Graham
William Hamilton
Joel Harrison
Beth Harsaghy
Chris Lynch
John Mashey
Marc Meyer
Phoebe Miller
Eli Nielsen
Fred Pack
Durk Pearson
Ron Posner
Pat Rafter
William Robinson
Pat Sarma
David Schmidt
Tom Slezak
William P. Spencer
Shawn Steel
Ed Taylor
Roy Takai
Zhang Yuchao
Richard Vento
Peter Vizel
Jerry Walker
Colin Watanabee
Barbara Wright
Mpyron Zimmerman

Preface

This book shows you how to develop software applications in a UNIX environment,
in a small fraction of the time and effort needed with other systems. The UNIX
environment is so different that it makes possible a new approach to computing.

There are many books available on writing C programs, administering a UNIX sys-
tem, and specific software like spreadsheets and word processors. But this book tells
you how to put them all together. System integration is the hardest part of software
development. Therefore, we have filled this book with examples solutions, source
code, tricks, hints, and useable theory to help you.

Each of the authors has over 20 years of experience in computing in which we have
had to put together an enormous number of applications on many different systems
for a wide range of users. We have tried to put as much of what we have learned
into this book as possible.

We emphasize database management because almost all applications require data to
be entered, manipulated, searched, or reported. By learning simple database opera-
tions, you can approach any application with a powerful tool kit.

Model Business System

We have even included, as an example to get you started, a model business system
with general ledger, tax, accounts receivable and payable, inventory, payroll, and
operations. Included is a tutorial, manual pages, and source code of the UNIX shell
scripts. They show you how to use the system, and also how to manage a business
with a computer.

New Approach to Relational Database Management

Most books on relational database theory take a very mathematical approach and use
a difficult language. They talk of relations, tuples, attributes, degrees, cardinality,
and normalization. We’ve translated these terms into familiar words like tables,
rows, and columns. We also show a new approach to normalizing tables which any-
one can understand. We have tried to make relational database theory accessible to
everyone.

The UNIX System

The UNIX system, of course, is among the greatest software tools available. It is
portable, multi-user, and multi-tasking. It runs on hundreds of computers, from the
IBM PC/XT to the Cray 2. It has been adopted as the standard operating system by
the U.S. federal government (POSNIX), and many corporations and universities.
But the most important features of the UNIX system are the UNIX shell, the
software tools, and the pipe and filter approach.

xiii

xiv Preface

To get the full power of the UNIX system, one must relearn and rethink how to do
software development. Most software people are not aware of what they can do with
the UNIX system. They use the same approach that they learned on other systems.
It is as if they had a Porsche, and hitched a horse to it, not knowing that they could
start its engine and roar away. In this book we will teach you how to drive, but you
may have to give up your attachment to old fashioned horse and buggy styles of pro-
gramming.

UNIX Shell is the Best Fourth Generation Programming Language

It is the UNIX shell that makes it possible to do applications in a small fraction of
the code and time it takes in third generation languages. In the shell you process
whole files at a time, instead of only a line at a time. And, a line of code in the
UNIX shell is one or more programs, which do more than pages of instructions in a
3GL. Applications can be developed in hours and days, rather than months and
years with traditional systems. Most of the other 4GLs available today look more
like COBOL or RPG, the most tedious of the third generation languages.

Flat File Database

There are two approaches to database management. Traditionally, a large database
management program had to be written to run on the old mainframe and mini com-
puter operating systems which provided only a minimum of assistance. Therefore,
all of the functions needed had to be coded. Each system had its own language and
data formats. They seldom talked to each other. It was hard to pass data from one to
the other. It took a lot of work to learn and code them. Then when you moved to
another system, you had. to learn a new language and figure out how to transfer and
convert your data and rewrite your programs.

UNIX solved most of these problems by providing a huge set of tools and facilities
and the ability to link them together with pipes and shell programs. Therefore, the
burden on a database manager is significantly reduced. To take advantage of the
UNIX environment, flat file database management systems were developed, includ-
ing /rdb (pronounced slash-r-d-b) from Robinson Schaffer Wright, Prelude from
VenturCom, Unity from AT&T, among others. These database managers work with
UNIX and keep their data in flat ASCII UNIX files. You can mix UNIX and data-
base commands in the same shell scripts and pipe' commands. Therefore, you do not
lose the power of UNIX by going into the database program. You use your UNIX
knowledge, and/or learn UNIX skills once. Then you can move to most computers
without having to learn yet another system and language.

/rdb Relational Database Management System for UNIX

We use /rdb for the examples in this book because it is so simple to learn and use,
and does not get in the way of your understanding the principles of UNIX database
management and applications development. It makes a good teaching aid. Exam-
ples with /rdb show you how to do basic tasks, without having to spend time learn-
ing complex systems. So even if you choose other software packages, you have
learned the principles in the easiest way. You can then focus on the more cumber-
some syntax of other software packages. /rdb is also one of the least expensive of
the database managers and is available on any UNIX computer.

At the end of this book is a manual of the /rdb commands including examples of

Preface XV

their use, and the source code of all of the UNIX shell programs. They will give you
many ideas about how to handle specific problems in more detail than is appropriate
for the tutorial part of this book.

UNIX and DOS

There is a joke going around that in the future there will be only two operating sys-
tems, UNIX running DOS and DOS running UNIX. It has already happened. The
latest UNIX operating systems run DOS applications. And you can get the MKS
Toolkit of over 100 UNIX commands, including the latest UNIX korn shell, vi, awk,
grep, efc., to run on your DOS. \rdb (pronounced backslash-r-d-b), is the DOS ver-
sion of /rdb. Therefore, most of the programs described in this book will also run on
DOS (MS-DOS, PC-DOS, 0S/2) with the MKS Toolkit and \rdb. See the tear out
card in this book, which offers a discount on these packages.

Since UNIX and DOS run on most of the world’s computers, you can develop an
application on one computer and run it on many others. You can also network com-
puters together and run the same programs on each, transferring data in a standard
format. It is an old dream come true. But there are lots of details to make it all
work, which is what this book is about.

Macintosh

We see no conflict between the UNIX/DOS approach and the Macintosh approach.
In an integrated computing environment, we’ll be able to ‘point and click’ on, for
example, a shell script, or any arbitrary collection of commands. The concept of
relations as flat files and relational operators as programs is the common ground.

Required Knowledge

You should know how to log on to UNIX, to use its commands, to use a text editor
like vi. You should be aware of the method of using UNIX programs, often piped
together, to get things done without having to write C or other language programs.
You do not have to know how to program, although it helps.

There are many introductory books on UNIX and a few books on advanced UNIX
and shell programming: The UNIX™ Shell Programming Language by Rod Manis
and Marc H. Meyer [Manis 1986]. For more advanced UNIX, you should read
Stephen Prata’s Advanced UNIX™ - A Pro;rammer s Guide [Prata 1985], and Brian
Kernighan and Rob Pike’s book The UNIX™ Programming Environment [Kernighan
1984], and the new Kernighan book on awk. See the bibliography for more com-
plete citations.

This book starts where those leave off, and covers the details of putting together real
applications with databases. One or more of these books should be read because
they teach the UNIX and shell programming basics that we build upon. We assume
that basic knowledge so that we can focus on application development. But even if
you are new to UNIX, you should try to get started. If you get stuck, you can look
up ideas in the other books and in your system’s UNIX documentation.

To help overcome the old beliefs, we show how to develop and use software applica-
tions in the UNIX environment, covering all of the important tasks of programming
and setting up computer systems to do real work for users. A beginner will learn the

xvi

Preface

basics of database design and fourth generation programming. Experienced pro-
grammers will learn how to work in this new environment. Many UNIX gurus
understand in principle that UNIX is a far better environment, but need to know
more of the details of how to handle certain problems.

Computer Revolution

This book aims at nothing less than a revolution in computing! It challenges some of
the most encrusted assumptions and proposes a simple, elegant approach which
solves many of the major problems in computing today.

1.

Data should be kept in flat ASCII tables (files), not binary, so that we can
always see what we are doing, and do not have to depend upon some special
program to decode our data for us.

Programming should be done in a fourth generation programming language,
the most powerful of which is the UNIX shell, not in lower level languages,
except in extreme cases.

Programs should be small and should pass data on to other programs.
Software prisons, or large programs with self-contained environments, must be
avoided because they require learning and they make extracting data difficult.

All programs should be integrated with a common interface with both users
and data. All of our tools should look more or less the same for quick learning
and easy use.

We should build software and systems to meet interface standards so that we
can share software and stop dreaming that any individual or company can do it
all from scratch.

We should use networks to tie together computers and software so that simple
tables of data can be passed from one to another.

Industrial strength artificial intelligence and expert systems will have to be
developed in the same environment previously described, and not in toy
languages like LISP and PROLOG.

The UNIX system embodies the most advanced facilities for implementing
these principles.

Rod Manis
Evan Schaffer
Robert Jorgensen

Foreword

I stumbled into using UNIX in late 1978, in a Bio-Medical Research environment.
The machine was a PDP 11-34 running V6 UNIX, with custom automated micros-
copy gear used for image processing of mammalian cells. In those days there was
the Kernighan and Ritchie C book and the UNIX manuals themselves; nothing more.
Two degrees in computer science prepared me to tackle UNIX but I was still perhaps
understandably shy about investigating all of the 100+ tools, including such strange
ones as awk, lex, and yacc.

I quickly discovered that the use of the UNIX tools freed me from the great bulk of
the drudgery of supporting real end users on a computer system. 1 could string tools
together quickly instead of writing small one shot programs to do the myriad of data
manipulation tasks that characterize real life in the scientific computing world. In
the course of my work I acquired a relational database package, but found that it did
not mesh well with the UNIX tool-kit philosophy. Like the mammoth database sys-
tems I had previously used on large IBM systems, one had to drop into the database
package, where a whole new command language applied and the UNIX tools could
only be reached with extreme difficulty, if at all.

By 1983 I had added an early 16-bit microprocessor-based UNIX timesharing sys-
tem running V7 UNIX to my computer shop. I had a growing number of users who
were doing general purpose data processing and needed a variety of tools to handle
their needs. I was fortunate enough to be in attendance at the Usenix conference
where Rod Manis first described his /rdb database, that existed as a set of UNIX
filters. As he presented his paper I realized, along with numerous other members of
the audience, that Rod had grasped and implemented the central abstraction I had
been toying with but never formalized: a UNIX database should use ASCII files and
operate at the shell level as a series of filters. This simple but brilliant insight of
Rod’s, brought about by his mastery of a UNIX tool (awk) that I had ignored to
that point, provided my researchers with the single most powerful tool I have been
able to acquire to this date. Along with many others who remained after his talk to
discuss his ideas, I was one of the first users of the /rdb package. The medical
research environment is characterized by chronic lack of funding for computing
equipment and scarcity of programming expertise. Without mega-funding, I had no
choice but to find ways to let end users solve their own problems as much as possi-
ble, without making them all programmers.

To my mind, the power of this tool is the freedom it gives to the end users. For the
first time I could sit down with a novice and create a working sample database using
real data in a matter of minutes. Queries could be demonstrated and stored in user-
Jfriendly shell scripts. Within hours the end usets were fully capable of creating their
own databases. Their creativity was amazing: One researcher who had had a single
Fortran class eight years earlier wrote a two-page shell script using /rdb filters to

xvii

xviii Foreword

completely computerize her laboratory data processing and analysis. Other users
discovered that the innocent-appearing simple report writer was in reality a powerful
meta-tool that allowed them to write shell scripts that wrote shell scripts, yielding in
effect a two-dimensional program. By word of mouth it was demanded to be bought
for at least a dozen other machines at this site. The database for the world’s largest
melanoma (skin cancer) epidemiology study runs on /rdb, as do many other applica-
tions.

I have found this abstraction of a database (regular ASCII files, filter programs, nor-
mal file access) to serve well for moderate size databases and the frequency of
update and query that are common in the scientific research fields. Like most UNIX
utilities and indeed UNIX itself, it is always possible to write a single-point solution
that would be faster. I have found, however, that the ability to apply the full power
of the UNIX toolkit to database problems far outweighs any speed penalties that I
might be paying on the current generation of super-micros and super-minis. Even in
situations where a "TRADITIONAL DATABASE" is required, the rapid prototyping
of the /rdb approach is often used to provide the early insights into the proper way to
tackle problems requiring exceptional speed or size. I find that writing a custom pro-
gram to manipulate or calculate data is virtually unnecessary, since such problems
can nearly always be solved with the /rdb database and regular UNIX filters.

A completely unexpected benefit of this tool-kit approach to databases has been the
education of users, many of whom have had no prior computer training or exposure.
The early confidence gained in putting up their own simple databases often led to
users taking the plunge and developing more complex shell scripts using those tools.
In numerous cases, their continued interest led to them delving into awk and writing
custom front or back end programs. A few adventurous souls then began writing C
code in the awk scripts, as well as learning to use lex, which after all is merely a C
program-generator cleverly (?) disguised as a lexical-analyzer. The net result is that
I have had several novice users bootstrap themselves up to be excellent applications
programmers in C in an amazingly short time, all due to the good first experience
with the database tools!

The evolution of personal computers into machines with sufficient power to run
UNIX well (IBM AT, Mac 11, etc.) puts the ability to use the UNIX tool-kit philoso-
phy into the reach of every research lab and small business. A book like this is as
much a guide to using UNIX itself and the UNIX philosophy of problem solving as
it is to being a guide to a specific database. The authors have quietly effected a revo-
lution in the use of databases as a problem-solving tool that is as startling in its clar-
ity and simplicity as the development of the spreadsheet program.

Tom Slezak
Computer Scientist, UNIX Support
Lawrence Livermore National Laboratory

Preface

Foreword

Chapter

Chapter

Chapter

1.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

3.10
3.11
3.12

Contents

Introduction

Overview: Relational Database and UNIX

Operating Systems that Support UNIX Style Environments
Applications Development

Databases

UNIX Environment

Fourth Generation Programming Language

UNIX Shell Programming

Assemble Software Modules

Fast Prototyping

Tables: Where to store information

A World of Tables

Files

Column

Row

Column and Row

Shell Programming and Flat ASCII Files
Lists

Query and Report: How to get data out

column

row

Quotes

compute

justify

total

subtotal

Pipes

Syntax: How to enter commands right
UNIX Shell Scripts

Report Writing: How to get reports from your data
Conclusion

vii

xiii

xvii

WWNDNNN ==~ -

NI AN

10
10
11
12
13
14
14
15
16
18
19
21

viii

Chapter

Chapter

Chapter

4.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.

6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Data Entry: How to put data in

ve
Text Editor or Word Processor

Enter

Update

Programs and Other Formats

Rules for Table and List File Setup
Tab Problems

Seeing the Tabs

Table Width Problems

Special Characters

Data Validation: How to get data right

ve Form and Screen Database Editor

File Structure

The Command Line

The Screen File

The Header File

The Audit File

The Validation File
Commands

Multi-User Considerations
/rdb Compatability

Limits

Database Design: How to set it up

One-to-one Relationships in One Table
One-to-many Relationships in Two Tables
Many-to-many Relationships in Three Tables
Planning '

Normalization

Functional Dependency

Keys

Universal Relation

Problems

First Normal Form

Second Normal Form

Third Normal Form

Normalizing Example

Complex Queries with Joins

Pipeline Join

Phone Book

Contents

Contents i ix

Chapter 7. Shell Programming: Let UNIX do the work 73
sl Database Programming in UNIX Shell Language 73

7.2 UNIX Utilities 74

7.3 awk - Language to Produce Complex Reports 74

7.4 cat - Display a Table or List File 74

7.5 grep - Find All Rows That Contain a Matching String 74

7.6 od -c - Octal Dump All Bytes as Characters 74

7.7 sed - Stream Editor to Edit File in a Pipe 74

7.8 sh - UNIX Shell Programming Language 75

79 spell - Cheéck Spelling in a Table or List File 75

7.10 tail - Display Bottom Rows of a Table or List File 75

7.11 vi - Text Editor to Enter and Update Files 75

7.12 Reading and Writing Database Files 75

7.13 Parsing Rows 76

7.14 Tables to Shell Variables 76

7.15 Lists to Shell Variables 77

7.16 4GL 79
Chapter 8. Menus: One from column A and ... 83
8.1 Shell Menu 83

8.2 Screen Menu Example 83

8.3 case Actions 84

8.4 termput and tput Commarnds 85

8.5 clear Command 85

8.6 cursor Command 85

8.7 Help Facility: How to get help 86

Chapter 9. Screen Form Form and more forms 87
9.1 Building a Screen Form 87

9.2 screen Command 87

9.3 update.inv: Advanced Screen Program 88

Chapter 10. Fast Access Methods: How to get data fast 91
10.1 When Appropriate 91

10.2 index ' 91

10.3 search 92

104 Multi-Rows, Multi-Columns, and Multi-Keys 93

10.5 Methods 93

10.6 Analysis 97

10.7 Management 97
Chapter 11. Swiss Army Knife: A program for all reasons 99
11.1 Record Locking: It"s Mine 99

11.2 Dates: Conversion and Math 100

11.3 Set Theory Commands 103

Chapter 12.

12.1
12,2
12.3
12.4
12.5
12.6
12.7
12.8

Chapter 13.

131
13.2
133
134

Chapter 14.

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11

Chapter 15.

15.1
15.2
15.3
154

How to Solve Traditional Database Problems

Multi-User Concurrent Access to Files
Screen Form Entry

Security

Distributed Data

Backup

Checkpoint and Recovery

Validation

Audit Trails and Logging

Comparing Systems: Who's on First?

Resource Use

C Programming Unnecessary
Speed

Size

Database Theory: Ways of thinking about data

Can You Say that in English?
Database Models

Hierarchical

Network

Relational

Entity-Relationship

Binary

Semantic Network

Infological

Prolog: Programming in Logic
The Grand Unified Field Theory of Information

Al and Prolog: Programming in Logic
Prolog Language and Environment

/rdb Interface to Prolog

Problems of Prolog

searchtree: Database Tree Searching

Contents

105

105
105
106
106
106
106
106
106

109

109
109
110
111

113

113
113
114
114
115
116
117
117
117
117
117

119

119
121
122
123

Contents

Chapter 16.

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16

Chapter 17.

17.1
17.2
17.3

Chapter 18.

18.1
18.2
18.3
18.4
18.5

Chapter 19.

19.1
19.2
19.3

C Interface: Speak C to the database
Don’t

System

Execl

Execl Shell Programs

Fork

One-Way Pipe

Pipe to Standard-in

Two-Way Pipe

Programming Style

Fast Access

tabletostruct

Read Table into Memory: getfile and fsize
/rdb Functions: librdb.a

Colroutines

Display Example

Debugging

Converting from Other Databases to /rdb

SQL: How to talk SQL to /rdb
dBASE: How to talk dBASE to /rdb
R:base: How to talk R:base to UNIX and /rdb

Installation: How to set up /rdb

Step 1: tar from Tape, Floppy or Cassette

Step 2: Change Path Name

Step 3: Set RDB Environment Variable

Step 4: Source Installation (If you have source code)
Summary

/rdb Commands

Features
Most Important Commands
Commands Grouped by Function

xi

125

125
125
126
127
128
129
131
132
135
135
138
140
142
142
142
145

149

149
149
152

157

157
158
159
160
160

163
163
164
164

