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Introduction

For the parameter dependent problem

u'(z2) + AN f(u(z)) =0 , A>0
i (a) + ¥ f(u(2))

u(0) =u(l)=0
the following is known from application of general local ([13]) or global ([24])
bifurcation theorems in the case f(0) =0, f'(0) >0:

The trivial solution u = 0 exists for each A. From this trivial solution branch
there is bifurcation of nontrivial solutions in each point (0,A) for which the lin-
earized problem (I-1-1) has a nontrivial kernel, i.e., for A = iw/ VF(©0), i =
1,2,.... The bifurcating branches, i.e., connected components of nontrivial so-
lutions with bifurcation points in the (A,u)-space, are all unbounded and each
branch consists of solutions (\,u) where u has a number of simple zeroes in
10,1[ which is characteristic for the branch. In the solution branches bifurcating
from 0 all u are bounded by the first positive and first negative zero of *f .

In applications more information about the shape of solution branches is needed.
It is easy to see that all branches are in fact curves which are at least as smooth
as f is (see below). It is then of interest whether these curves have turns with
respect to the \-direction or not, and if so, how many turning points there are
and where they are located. Let, e.g., the branch of positive and negative solutions
to (I-1-1) look like this:

Figure I.1.1
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Then (I-1-1) is the stationary equation of

= Ugzgz A?
(L1-2) Up = Ugg + A f(u)
u(t,0) = u(t,1) =0
and the directions of the solution branches determine the stability of the stationary
states as indicated.

In combustion problems there often occurs an equation of the form (I-1-1) de-
scribing intermediate steady states of the temperature distribution u, A then
measures the amount of unburnt substance. In this context turning points of a
branch correspond to ignition and extinction points of the process, and it is of
importance whether or not those exist (see e.g.[15]).

In some cases one can skilfully choose sub- and supersolutions of (I-1-1) and then
get the result that there exist at least two stable solutions for a certain \ -interval.
Then using degree theory there has to be at least one more unstable solution for
any A in this interval. This way it is shown that turning points of the branch have
to exist, but one only gets estimates from below for both the number of solutions
and the number of turns of the branch. It is not possible to give upper estimates
of these numbers without using strong analytical tools.

We use for this purpose the so called time map T (see [31]) of the nonlinearity
fs

First of all by a scaling of z, = = A we can write (I-1-1) in the form

u’(t) + f(u(t)) =0

L u(0) = u()) = 0

thus having the parameter in the boundary condition.

If u(t)=U(t,p) is the solution of the initial value problem

v’ + f(u) =0

(1-1-4)
u(0)=0,4'(Q)=p#0

then we define T(p) = Ty(p) to be the first positive ¢ for which U (t,p) is zero
again, if this one exists for the given p:
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Figure 1.1.2

T,(p) is the second zero of u, T3(p) the third (existence provided) ete..
Then the solution branches of (I-1-3) are given by the graphs of the T;:

(A, u) solves (I-1-3) if and only if u = U(+,p), Ti(p) is defined for some ¢ =1,2, ...
and

(I-1-5) A=Ti(p).

Stable regions of positive or negative solution branches are u'(0) = p-regions with
pT'(p) > 0, unstable ones correspond to pT”(p) < 0, turning points of branches
correspond to T"(po) =0, T"(pe) # 0.

Time maps and period maps (see below) have been studied in several papers, see
(3], [5], [8], [9], [22], [25], [26], [31], [33], [35], [36], a list of references which is by

no means complete.

By the implicit function theorem T; is always at least as regular as f is since

d
U(Ti(p),p) =0 ’EU(T‘(”)’T’) = |p| > 0.
.
The last identity follows since (I-1-4) has a first integral

(11-6) S(u)? 4 F(u) = const = o
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for w =U(-,p) and F being the integral of f with F(0)=0.

Note that with T and T; we get all solutions of (I-1-3), not only the branches
bifurcating from 0. Also it is not necessary that we have a trivial solution set via
f(0) = 0. (There are general results for global branches in these cases too, we did

not mention them.)

From (I-1-6) one can derive a formula for 7' which is a singular integral (see (1-1-
3)). For studying derivatives of T this one is not very useful. Therefore in section
1.1 we derive a time map formula for branches bifurcating from zero which does
not contain a singularity and can be easily differentiated. The idea behind this is
to use a transformation in » which maps the orbits of (I-1-4) in the phase plane
into circles. For solutions in bifurcating branches this can be done since f does
not change sign more than once along the range of such solutions.

Chapter 1 consists entirely ‘of applications of this time map formula. Section 1.2
recalls results about bifurcation points and bifurcation directions. In 1.3 we use
the time map formula to reprove results by Chafee, Infante ([5]) and Opial ([22])
giving conditions for branches which have only a single turn at the bifurcation
point, itself.

Paragraph 1.4 goes a step further and gives conditions on f under which T;' does
not change sign. This results in branches which still have at most one turning
point, but this one can occur away from the bifurcation point (see figure 1.1.2).
This allows for a change of stability along branches, but stability can change at
most twice.

We have tried to find a condition on f for 7} # 0 which can be verified in
examples. For this we introduce the notion of an A-B-function which is a function
f with

- g(f")2 < 0 in regions where f' > 0.
ff"=3(f")* <0 in regions where f' <0.

(I-1-7)

It is shown that T]' > 0 for all bifurcating branches of A-B-functions. This class
contains all polynomials without complex zeroes as is shown in 1.5. With this we
have generalized the result of Smoller and Wasserman in [31] which says that the
T; have at most one critical point which then is a minimum in the case that f is
a cubic f(u) = —u(u — a)(u — B) with a@ <0 < . 1.5 contains more methods
for getting hold of A-B-functions, using, e.g., the Schwarzian of f. See also the
examples discussed near the end of this introduction.
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Section 1.6 deals with the asymptotic behaviour of T' as p approaches a boundary
point of its definition set. Some of the results can be used to prove existence of
dead core solutions to certain reaction diffusion problems (see examples 1.6.2 and

3.2.2).

Chapter 2 contains results on the Neumann problem corresponding to (I-1-3)

u' + f(u) =0

1-1-8
{F1-8) u'(0) = u'(\) =0,

and related results on period maps of Hamiltonian systems
(I-1-9) u' = fa(v) v' = —f1(u).

If r is some zero of f then u = r is always a trivial solution of (I-1-8). The
linearization of (I-1-8) about u = r has a nonzero solution if and only if f'(r) >0,
A =in/\/f'(r), i =1,2,.... These are the bifurcation points of (I-1-8). Solutions
u in the bifurcating branches are bounded by the first zeroes of f below and above
r . For these branches one can show that they have a single turn at the bifurcation
point in the case that f is an A-B-function. The proof uses a Neumann time map
defined analogously to the Dirichlet time map mentioned before.

With about the same method we get monotonicity results for the period map of
(I-1-9), which is the map assigning to E the least period II(E) of a periodic
solution of (I-1-9) with energy E = Fi(u) 4+ F2(v). Such results can be used
to prove bifurcation of subharmonic solutions if (I-1-9) is perturbed by a small
nonautonomous t-periodic term (see [7]). Another application of such results
is the existence and uniqueness of period-4-solutions to the time delay equation
u'(t) + f(u(t — 1)) =0 with antisymmetric f (see [18]).

In chapter 3 we return to the Dirichlet problem and give results for problem (I-1-3)
where we assume less for f and also consider non bifurcating branches:

In 3.1 we no longer assume f(0) =0, f'(0) > 0 but just consider some f defined
on 10,al[ which is positive there. This way we can handle the branch of (I-1-3)
which consists of solutions (\,u) with u positive and u” not changing sign. For

these we get a time map formula similar to the one in 1.1.

The regularity of f required for the existence of T turns out to be a fairly
weak one. Therefore problems with singularities at u = 0 can be dealt with.
Multiple zeroes of f at 0 can also occur. In this case there is “bifurcation” from
(A = co,u =0). If f is an A-B-function then the branch is shown to be again
U-shaped.
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The case f(0) > 0 shows more difficulties than f(0) = 0: For f(u) = —(u —
a)(u — B)(u — ) with @ < f < 0 < v it is shown in [31] that the number of
critical points of T' is at most two, and exactly two if § is close to 0.So far we
are not able to generalize this to A-B-functions f, though it seems like this result
is true. The only thing we could do is to give a criterion on f such that T has
at most one critical point. In the case f(0) > 0 it is not possible to show this
via a sign of 7" or a related expression. Instead we use variation diminishing

properties of integral operators proved in [19], results are to be found in 3.3.

In 3.4 we discuss positive solution branches in which u” changes sign, i.e. u has
at least one zero of f in its range. Under certain assumptions on f we can again

show that branches are U-shaped.

The last chapter discusses some general features of Dirichlet time maps. In 4.1 we
give proofs for the relationship between the sign of pT”(p) and stability. Also there
is a strong connection between T(p) and the energy level of the corresponding
solution of (I-1-3) if we define the energy level via the Liapounov functional

A
Bw = [ 50 - Flue) dt.

It turns out that E is decreasing along parts of solution branches with pT"(p) > 0
and increasing if pT”(p) < 0. As another result if there are multiple solutions for
a fixed A an unstable solution always has higher energy than the two “nearest”

stable solutions.

In section 4.2 we again only consider nonlinearities f defined on some interval
10,al which are positive there. We pose the inverse problem if it is possible to
decide for a given curve p — T(p) whether or not it is the time map of some f
and if it is possible to calculate f from T, i.e., to get the problem back from its
solution branch. The set of all time maps of such f is characterized by an integral
condition and the operator f — T is shown to be invertible.

Applications include proofs of generic properties of such time maps analogous to
[3], [33], as well as estimates for A -regions of existence and nonexistence for (I-
1-3), and can be found in 4.3 among some games about possible and impossible
time maps.In the appendix, finally, we briefly discuss the method to obtain time

map plots via the computer. .

In order to give a flavour of the possible applications results in this monograph
can have let us discuss two specific examples. Please hote that the argumentation

used to interprete results is not rigorous up to the detail.
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It is a good illustration to view (I-1-1) as the stationary equation for a population
of size u diffusing on the interval [0,1] which has a hostile environment thus
forcing u(t,0) = u(t,1) = 0. 1/A% can then be regarded to be the diffusion
coefficient of the population, wheras f*(u) = f(u)/u models the reproduction

rate consisting of the birth rate minus the death rate.

Let us first consider the example
fra)=e @ | az0.

This means that the reproduction rate is maximal for a certain optimal population
size a and declines to 0 as u becomes large but the death rate never exceeds
the birth rate. This means for the model without diffusion

up = uft(u)
that any population with a positive intitial size grows unlimited. If we now add
diffusion
Uy = iu +uft(u)
(1-1-10) a2 AT

u(t,0) =u(t,1)=0

then the behaviour depends on the size of A and is in principal governed by the
bifurcation diagram for the stationary equation (I-1-1).

All stationary nontrivial branches are given by A = T;(p) . In this specific context

only the positive solution branch A = T(p), p > 0, matters since the system is not

going to get near any sign changing steady state if it starts out with u(0,z) > 0

(maximum principle). Section 1.2 gives the bifurcation points (Ai,u=0) as
Xi=T:(0) = T =i

RV I0)

and the bifurcation directions as

05 7 even
71"'(0) = " g f"
3(f")?

So the positive branch starts out unstable if « >\0.

(0) = —%ae"z, i odd

For the “other end” of the branches we use section 1.6: First of all the definition
set of the T} is (see section 1.1) D(Ty) = 1b7,b" [ with*b™ = —/2F(—),
bt = /2F(c0) and D(T;)=1b",=b7[ for : 2 2.

IX
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From proposition 1.6.1 (iv) it follows that lim,_,+ T(p) = —= with
et = limy oo 2703 = limy—oo f*(u) =0 and lim,_j- T(p) = A= with
¢~ =limy__o fH(u)=0. So

li = .
e T(p) = 400

Formulas (1-6-17) and (1-6-18) then imply for all the other branches that
limy_3- _3- Ti(p) = +00, i > 2.

Let us put together what we have found out by this for the positive branch A =
T(p), p > 0: It starts out unstable but has to recover stability later since T(p) —
+o0o as p— bt . If we let A* = minp>o T((p) > 0 then no nontrivial steady state
exists for A < A\* and the zero solution is a global attractor for the system ([14],
[17]). The population dies out from too fast diffusion and the hostile environment.
For A > A\ = 7e®’ /2 the zero solution looses its stability, but the population
could never grow beyond limits: From the Liapounov functional and the fact that
ft(+o00) = 0 it follows that any solution of (I-1-10) is a priori bounded. So
diffusion and the zero boundary conditions prevent unlimited growth.

Results in [17] can be used to obtain further information on the dynamical be-
haviour of our system for A > A* if we know that all steady states are hyperbolic
(this follows from T!(p) # 0 if A = T;(p)) and if we know more about the maxi-
mal invariant set A which consists of the unstable manifolds of all steady states
present for our A. For this example this is possible by applying sections 1.3, 1.4,
1.5 and the results about connecting orbits obtained by Brunovsky and Fiedler in
[4].
e

Let us first consider the case a = 0. Then u%ﬂu—"l = uft'(u) < 0 and we
can use theorem 1.3.2 to obtain that pT!(p) > 0, which completely proves the
following bifurcation diagram:
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In this case A coincides with A* and it follows ([14], [17]) that our population
dies out for A < )\; and for A > )\; is attracted by the single stable positive

steady state represented by A = T(p).

If we do not assume that the maximal reproduction rate occurs at u = 0, i.e., if
we take a > 0, then we know already that 7'(p) < 0 near p = 0. So there is
at least one turning point of the positive branch in the nontrivial range. We can
show that there is at most one by showing that 7" > 0. This again follows from
the results in 1.4 if f is an A-B-function (see (I-1-7)). Now it is clear that (I-1-7)
follows from (In|f[)” < 0 and (In|f'[) < 0 on regions where these are defined
and from ff”(u) < 0 whenever f'(u)=0.. The last and the first condition can
be easily checked. For the middle one we notice that

Fi(u) = e (4 — u)(u— B)

with A =1(a++va?+2), B= j(a—Va?+2), thus

1! T L

@D = -2~ o gy <O

So we have proved the following bifurcation picture:
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This diagram determines the complete qualitative dynamical behaviour of our
time dependent system, also if we additionally consider initial conditions which
are allowed to be negative in subsets of 10,1[: The numbers along the branches
indicate the dimension of the unstable manifold of each of the stationary solutions
in that part of the branch, In [4] it is proved that for this type of a global bifur-
cation diagram there is an orbit of (I-1-10) from any given unstable steady state
u to each steady state v whoose unstable dimension is lower. These connecting
orbits are indicated as arrows. The dimension of the set of orbits connecting u
to v is just the difference between their unstable dimensions. Stationary points
together with their connecting orbits form the maximal compact invariant set A
for the flow to which everything is eventually attracted ([17]). Since we can deduce
the flow on A from the bifurcation diagram, the complete qualitative behaviour
of (I-1-10) is known. Every initial distribution which does not lie in either one of
the stable manifolds of the unstable solutions will be attracted to one of the sta-
ble steady states. This set of initial conditions is open and dense in H'([0,1]).
If we only consider initial conditions u(0,z) > 0, # 0, as is appropriate in
our model context then the following can be said: For A < A* we always have
lim;_,ou(t,z) = 0. If A* < A < A; then there are two positive steady states
u; < ug with u; being unstable, us stable and with © = 0 being an additional
stable steady state. Then the unstable manifold of u; (a set of codimension 1)
divides the set of initial conditions into two components which are then either
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attracted by us or 0. If u(0,z) > ui(z) then lims .o u(t,z) = uz(z) whereas
for u(0,z) < ui(z) we get lim;—.o u(t,z) = 0, the initial population size was not
large enough to allow survival. For A > A, the zero solution has become unstable
and there is a single positive steady state to which any positive initial condition
is attracted.

Next it might be interesting to give an estimate of the value A* below which
everything dies out. We can do this in theory using proposition 4.3.2 in chapter 4:

V2F(u) y . i
2msTry 0 S AR

But since F(u) cannot be calculated if & > 0 we can only give a more crude

concrete estimate from below using f': From (4-3-4) we get

min 7~ 8y) > = -
w20 f(u) T \/maxuzo f'(u)

Now f'(u) = e~(=9*(1 4 2au — 2u?) < maxy>o(l + 2au — 2u?) =1+ a?/2. So

son DA
T V2+a?

In the previous example no unlimited growth in the presence of diffusion was

possible because of f*(co) = 0. This is different if we choose

u—1
u41"

The choice of the production rate carries another difference: It is negative for u

fH(w) =

near 0, which is an appropriate modelling for a population with sexual repro-
duction. This way we no longer have f’(0) > 0, thus no bifurcation from the
trivial solution branch occurs and the the results of section 3.4 for nonbifurcating
branches apply. From there we get that the time map for positive solutions T'(p) is
defined for p € ]0,00[ . Representation (3-4-13) for T(p) together with proposi-
tion 3.1.4 shows that lim,_..o T(p) = mv/c with ¢ = limy—co 271;(—(:% = m:_f.oj =1
and that lim,_.o T(p) = +o0.

In the case that f starts out negative near 0 and only has a single sign change
on 10,00 condition (3-4-23) for theorem 3.4.4uis always satisfied. This tells us
that

(1-11) %T(p) >0 with p? = p* + 2F(1)

XIII
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provided f is an A-B-function where it is positive, that is on ]1,00[. Since f’
is positive there we only have to check the first part of (I-1-7) which follows easily
from f" <0.

So there is a change of variables for T' which turns it into a convex function.
Because of the asymptotic behaviour we then conclude that 7" is always negative
and the A\* = r is the minimal value of T':

us(u-1)/(utl)

TR
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o.srrE !\
1
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i
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Figure I.1.5

Hence, as in the model without diffusion the 0— solution is always stable, but its
region of attraction changes with . If the unstable steady state u; given by
A = T(p) is present (for A > A*) then any initial condition below u; is attracted
to 0 whereas we expect anything above it to grow unlimited.

In this example it is interesting to see the influx of a diffusion rate which depends
on the population density. If we modify our model to

1
(1-1-12) ur = 3z (d(w)us): + f(u)
u(t,0) =u(t,1) =0
with d(u) > 0 then the bifurcation diagram of steady states can change with the

form of d(u). With D(u) := [ d(s)ds>, h being the inverse function of D and
with u = h(v) (I-1-12) becomes equivalent to

= ¥ ’
(1-1-13) (h(v))e =3zvzz + f(h(v))
'U(t,O) ) 'U(t, 1) =05
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This problem has a stationary equation (I-1-1) with v taking the place of u and
fi:=foh the place of f.

Since in our example f" < 0 we not only have that f is an A-B-function but
that the Schwarzian S f of f (see 1.5) is negative where f,f' > 0. Then by
lemma 1.5.7 we get that foh is an A-B-function for any h with Sh <0. This is
in particular true if h is a linear fractional transformation because then Sh=0.
So choosing any linear fractional transformation for D will give us the result that
T is a convex function modulo a transformation in p. The particular behaviour
of T then only depends on the aymptoticts near the boundary of its definition
set. Let us choose the two possible examples of D which yield two rather different

bifurcation diagrams:

First consider

(I-1-14) D(u) =

(:_u 3 a,f>0.
This implies that the diffusion rate d(u) starts at a positve level at u = 0 and
decreases to 0 as u — oo, modelling an effect of increasing stickiness. Then f
is defined for 0 < v < a, and the definition set of T' is again ]0,00[. Since
F(a) = f(a) = +oo0 we conclude from 3.1.4 together with (3-4-13) that T((p) — 0
as p — 0o. So this is the bifurcation diagram (here a =1, B=2):

{hun2-2%u)/(1-un2)

,,*.l ol

-f 38 - : ; :

o T ew | oam | ne onE vso | S 635 2 A0

Tine naps min T1:0.61553603 max 71:7.93015268 HHR control=6.3
Figure 1.1.6

The difference to the situation d(u) =1 is that a “hair trigger” unstable steady
state u; = h(v;) is present for all A. So the strategy of “sticking together” has
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the effect that the 0 always has a finite region of attraction and that unlimited
growth is never excluded. Note that this is possible since the production rate
ft(u) has a positive lower bound as u — oo thus we assume infinite resources
for the population. There is no way that any choice of d(u) could alter the fact
of restricted growth in our first example since there the decrease of f* towards 0
is too fast. Actually it is not obvious that the bifurcation diagram here translates
into the asymptotic behaviour of (I-1-12) or (I-1-13) in the same way as in the first
example. But the reader can easily work out that this is in fact the case using the
remarks at the end of section 3.2.

The other possible choice of D is
ou

f—u ’

This way (I-1-12) only makes sense for 0 < u < § and d(u) increases from a

(I-1-15) D(u) =

a,f>0.

positive level at u =0 to infinity as u — f. This could model a phobic reaction
if the population density becomes too large. (Don’t take the model interpretation
too serious, it is only included here to make things a little more illustrative. But
these are the lines along which “real” models could be discussed.) f(v) = f(h(v))
then is defined for 0 < v < oo with f(v)/v — 0 as v — oo since h(v) — f
as v — oo and ft is bounded. So with the same sort of arguments as before
T(p) — oo as p— oo and T(p) — oo as p — 0. This way the following picture
is proved (again here a =1 and f=2):

(23un2-2%u)/(Jxur2rdsut])
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