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PREFACE

A good foundation in the mechanics of deformable solids is essential for
most engineers. To meet this requirement many engineering educational
programmes include, after an introductory course on strength of materials,
an advanced course on the subject. The conventional method of treating
the advanced subject as an extension of the introductory course leaves
many things incomplete. At the same time, to treat the advanced subject
completely from the continuum mechanics or elasticity theory approach
is to make it unnecessarily complicated. A compromise therefore, is
needed between these two approaches. The present book is expected to
meet this requirement.

The contents of the book“can logically be divided into two parts—the
first part dealing with principles and the second part with applications or
specific problems. The first two chapters discuss the analysis of stress
and the analysis of strain. These two chapters follow the continuum
mechanics approach without much mathematical complexity. This
approach lays a good foundation to the subject matter. These topics are
analysed in the language of ‘strength of materials’ rather than in the lan-
guage of the ‘elasticity theory’, without losing rigour. The third chapter
dealing with stress-strain relations for linearly elastic solids makes use of
physical interpretations to arrive at the results rather than depending too
heavily on a formal approach. Students have found this approach more
appealing than the conventional formal one.

In most textbooks, the theories of failure or yield criteria are discussed
towards the end of the book. However, its logical place is immediately
after the stress-strain relations since it establishes the condition or condi-
tions when yielding begins. Consequently, Chapter 4 deals with theories
of failure or yield criteria. This chapter also contains a brief introduction
to ideally plastic solid. Chapter 5 dealing with cnergy methods is quite
exhaustive and covers many important topics like the reciprocal theorem,
theorems of Castigliano, the thecorem of virtual work, Engesser’s theory
and Maxwell-Mohr integrals.



The last five chapters deal with apphcations or speciiic problems.
Bending of beams is discussed i Chapter 6. Asymmetrical bending.
shear centre, curved beams and deflections of thick curved bars are treated
in this chapter. Torsion of solid cyfindrical rods and of thin-wailed multiple-
cell closed sections are discussed in Chapter 7. Timoshenko’s book on the
advanced strength of materials had influenced many authors to inciude
a chaf)ter on plates and shelis in their books. However, the trend is
changing. The theory of plates and shelis is taught separately in most
institutions and not much justice can be done in including a brief discus-
sion on these two topics. Instead, a chapter dealing with axisymm-tric
problems and another on thermal stresses are included in this beok. Since
many enginecring problemi~ deal with these, 1t 1s believed that their inclusion
will be more useful. THi. List chapter contains three sections. These sections
deal respectively with bears columns. treatment of stability prebiem us
an eigenvalue problem, and eaergy methods to solve buckling problems.

All chapters have worked examples. Problems for solution are given at
tlie end of each chapter. Answers are given to most of the problems. In
de fing with numcrical examples and problems, quantitics are given in
MKS a, well as SI units. 1 shall be grateful if my attention is drawn to
errors that might have crept ii.

Partial financial asistance given by the Curriculum  Development cell
estabiished at the Iystitute by the Ministry of Edecation and Culture is
gratefully acknowledged.

LS. SRINATH

vi  Prslace



Preface

Chapter 1

CONTENTS

ANALYSIS OF STRESS 1

1.1 Introduction 1 .

1.2 Body Force, Surface Force and Stress Vector 2

1.3 The State of Stress at a Point 4

1.4 Normal and Shear Stress Components 4

1.5 Rectangular Stress Components 5

1.6 Stress Components on an Arbitrary Plane 7

1.7 Digression on Ideal Fluid 12

1.8 Equality of Cross Shears 13

1.9 A More General Theorem 14

1.10 Principal Stresses 15

1.11 Stress Invariants 17

1.12 Principal Planes are Orthogonal 18

1.13 The Cubic Equation has Three Real Roots 18

.14 Particular Cases 20

1.15 Recapitulation 21

1.16 The State of Stress Referred to Principal Axes 25

1.17 Mohr’s Circles for the Three-dimensional State of Stress 26
1.18 Mohr’s Stress Plane 27

1.19 Planes of Maximum Shear 29

1.20 Octahedral Stresses 30

1.21 The State of Pure Shear 31

1.22 Decomposition into Hydrostatic and Pure Shear States 32
1.23 Cauchy’s Stress Quadric 35

1.24 Lame’s Ellipsoid 37

1.25 The Plane State of Stress 40

1.26 Differential Equations of Equilibrium 42

1.27 Equilibrium Equations for Plane Stress State 44

1.28 Boundary Conditions 47

1.29 Equations of Equilibrium in Cylindrical Coordinates 48
1.30 Axisymmetric Case and Plane Stress Case 51

Problems

Appendices
Appendix | Mohr’s Circles 56



Appendix 2 The State of Pure Shear 58
Appendix 3 Stress Quadric of Cauchy 62

Chapter 2 ANALYSIS OF STRAIN 65

2.1 Introduction 65

2.2 Deformations 66 .

2.3 Deformation in the Neighbourhood of a Point 68

2.4 Change in Length of a Linear Element 70

2.5 Change in Length of a Linear Element—Linear Components 72
2.6 Recctangular Strain Components 73

2.7 The State of Strain at a Point 73

2.8 Interpretation of Yzy, Yyz, Yz @s Shear Strain Components 74

2.9 Change in direction of a Linear Element 76

2.10 Cubical Dilatation 77

2.11 Change in the Angle between Two Line Elements 80

2.12 Principal Axes of Strain and Principal Strains 81

2.13 Plane State of Strain 85

2.14 The Principal Axes of Strain remain Orthogonal after Strain 86
2.15 Plane Strains in Polar Coordinates 87

2.16 Compatibility Conditions 88

2.17 Strain Deviator and its Invariants 92

Problems
Chapter 3 STRESS-STRAIN RELATIONS FOR LINEARLY ELASTIC SOLIDS 96

3.1 Introduction 96

3.2 Generalized Statement of Hooke’s Law 96

3.3 Stress-Strain Relations for Isotropic Materials 97
3.4 Modulus of Rigidity 98 '

3.5 Bulk Modulus 99

3.6 Young’s Modulus and Poisson’s Ratio 100

3.7 Relations between the Elastic Constants 100

3.8 Displacement Equations of Equilibrium 101

Problems

Chapter 4 THEORIES OF FAILURE OR YIELD CRITERIA
AND INTRODUCTION TO IDEALLY PLASTIC SOLID 105

4.1 Introduction 105

4.2 Theories of Failure 106
4.2.1 Maximum Principal Stress Theory 106
4.2.2 Maximum Shearing Stress Theory 108
4.2.3 Maximum Elastic Strain Theory 109
4.2.4 Octahedral Shearing Stress Theory 109
4.2.5 Maximum Elastic Energy Theory 110
4.2.6 Energy of Distortion Theory 111

4.3 Significance of Theories of Failure 113

4.4 Use of Factor of Safety in Design 115

4.5 A Note on the Use of Factor of Safety 119

4.6 Mohr’s Theory of Failure 122

4.7 Ideally Plastic Solid 123

4.8 Stress Space and Strain Space 125
4.8.1 The Deviasaric Plane or the = Plane 126

4.9 General Nature of the Yield Locus 127

4.10 Yield Surfaces of Tresca and von Mises 128

‘viii Contents



4.11 Stress-Strain Relations (Plastic Flow) 129
4.12 Prandtl-Reuss Equations 131
4.13 Saint Yenant-von Mises Equations 132

Problems
Chapter 5 ENERGY METHODS ) 135

5.1 Introduction 135

5.2 Hooke's Law and the Principle of Superposition 135

5.3 Corresponding Forces and Displacement ot Work-Absorbing
Component of Displacement 138

54 Work Done by Forces and Elastic Strain Energy Stored 138

5.5 Reciprocal Relations 140

5.6 Maxwell-Betti-Rayleigh Reciprocal Theorem 141

5.7 Generalized Forces and Displacements 141

5.8 Begg's Deformeter 145

5.9 First Theorem of Castigliano 147

5.10 Expressions for Strain Energy 148

5.11 Fictitious Load Method 155

5.12 Statically Indeterminate Structures 156

5.13 Theorem of Virtual Work 157

5.14 Kirchoff’s Theorem 160 :

5.15 Second Theorem of Castigliano or Monabrea’s Theorem 161

5.16 Generalization of Castigliano’s Theorem or Engesser’s
Theorem ~ 165

5.17 Maxwell-Mohr Integrals 167

L

Problems
Chapter 6 BENDING OF BEAMS 179

6.1 Introduction 179

6.2 Straight Beams and Asymmetrical Bending 180

6.3 Regarding Euler-Bernoulli Hypothesis 189

6.4 Shear Centre or Centre of Fléxure 191

6.5 Shear Stresses in Thin-walled Open Sections: Shear Centre 193
6.6 Shear Centre for @ Few Other Sections 200 .

6.7 Bending of Curved Beams (Winkler-Bach Formula) 201

6.8 Deflections of Thick Curved Bars 209

Problems
Chapter 7 TORSION 223

7.1 Introduction 223
7.2 Torsion of General Prismatic Bars—Solid Sections 225
7.3 Alternative Approach 229
7.4 Torsion of Circular and Elliptical Bars 234
7.5 Torsion of Equilateral Triangular Bar 237
7.6 Torsion of Rectangular Bars 239

7.6.1 Empirical Formula for Squatty Sections 241
7.7 Membrane Analogy 242
7.8 Torsion of Thin-walled Tubes 243 .
7.9 Torsion of Thin-walled Multiple-Cell Closed Sections 245
7.10 Torsion of Bars with Thin Rectangular Sections 248
7.11 Torsion of Rolled Sections 250
7.12 Multiply Connected Sections 253

Contents Ix



Chapter 8

Chapter 9

Chapter 10

7.13 Centre of Twist and Flexural Centre 259
Problems

AXISYMMETRIC PROBLEMS 264

8.1 Introduction 264

8.2 Thick-walled Cylinder Subjected to Internal and External
Pressures—Lame’s Problem 266

8.3 Stresses in Composite Tubes—Shrink Fits 272

8.4 Sphere with Purely Radial Displacements 276

8.5 Stresses Due to Gravitation 281

8.6 Rotaiing Disks of Uniform Thickness 283

8.7 Disks of Variable Thickness 288

8.8 Rotating Shafts and Cylinders 290

8.9 Summary of Results for use in Problems 293

Problems
THERMAL STRESSES 300

9.1 Introduction 300

9.2 Thermoelastic Stress-Strain Relations 301

9.3 Equations of Equilibrium 302

9.4 Strain-Displacement Relations 302

9.5 Some General Results 302

9.6 Thin Circular Disk: Temperature Symmetrical about Centre 304
9.7 Long Circular Cylinder 307

9.8 The Problem of a Sphere 311

9.9 Normal Stresses in Straight Beams duc to Thermal Loading 313
9.10 Stresses in Curved Beams due to Thermal Loading 316

Problems

FLASTIC STABILITY 322
10.1 Euler’s Buckling Lcad 322

I. BEAM-COLUMNS 326

10.2 Beam-Column 226

10.3 Beam-Column Equations 327

10.4 Beam-Column with Concentrated Load 328

10.5 Beam-Column with Several Concentrated Loads 331
10.6 Continuous Lateral Load 332

10.7 Beam-Column with End Couple 334

1I. GENERAL TREATMENT OF COLUMN STABILITY PROBLEMS
(AS AN EIGENVALUE PROBLEM)

10.8 General Differential Equation and Specific Examples 337
10.9 Buckling Problem as a Characteristic Value (Figenvaluc) Prob'em 344
10.10 The Orthogonality Relations 346

1II. ENERGY METHODS FOR BUCKLING PROBLEMS 348

10.11 Theorem of Stationary Potential Energy 348
10.12 Comparison with the Principle of Conservation of Energy 351
10.13 Energy and Stability Considerations 351

x Contents



10.14 Application to Buckling Problems 353

10.15 The Rayleigh-Ritz Method 354

10.16 Timoshenko’s Concept of Solving Buckling Problems 359
10.17 Columns with Variable Cross-Sections 361

10.18 Use of Trigonometric Series 362

Problems

Suggested Reading 368

Index 369

Tontents xi



1(45-3/1978)

1

ANALYSIS OF STRESS

1.1 Introduction

In this book we shall deal with the mechanics of deformable solids. The
starting point for discussion can be either the analysis of stress or the
analysis of strain. In books on the theory of elasticity, one usually starts
with the analysis of strain which deals with the geometry of deformation
without considering the forces that cause the deformation. However, one
is more familiar with forces, though the measurement of force is usually
done through the measurement of deformations caused by the force. Books
on the strength of materials, begin with the analysis of stress. The concept
of stress has already been introduced in the elementry strength of materials.
When a bar of uniform cross-section, say a circular rod of diameter d, is
subjected to a tensile force F along the axis of the bar, average stress o
induced across any transverse section perpendicular to the axis of the bar
and away from the region of loading is given by
o= _F _4F
Area 7d?

It is assumed that the reader is familiar with the elementary flexural stress
and torsional stress concepts. In general, a structural member or a machine
element will not possess uniform geometry of shape or size, and the loads
acting on it will als» be complex. For example, an automobile crankshaft
or a piston inside an engine’s cylinder or an aircraft wing are subject to
loadings which are both complex as well as dynamic in nature. In such cases,
one will have to introduce the concept of the state of stress at a point and
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its analysis which will be the subject of discussion in this chapter. However,
we shall not deal with forces which vary with time.

It will be assumed that the matter of the body that is being considered
is continuously distributed over its volume, so that if we consider a small
volume element of the matter surrounding a point and shrink this volume,
in the limit we shall not come across a void. In reality, however, all materials
are composed of many discrete particles which are often microscopic, and
when an arbitrarily selected volume element is shrunk, in the limit one may
end up in a void. But in our analysis, we assume that the matter is conti-
nuously distributed. Such a body is called a continuous medium and the
mechanics of such a body or bodies is called continuum mechanics.

1.2 Body Force, Surface Force and Stress Vector

Consider a body B occupying a region of space referred to a rectangular
coordinate system Oxyz, as shown in Fig. 1.1. In general, the body will be
subjected to two types of forces—body forces and surface forces. The body
force acts on each volume element of the body. Examples of this kind of
force are the gravitational force, the inertia force and the magnetic force.
The surfuce torces act on the surfiace or area elements of the body. When

Fig. 1.1 Body subjected to forces
the area considered lies on the actual boundary of the body, the surface
force distribution is often termed surface traction, In Fig. 1.1, the surface

forces F,, Fy, Fi, ... Fpure concentrated forces, while P is a distributed force.
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The support reactions Ry, R, and R; are also surfuce forces. Tt is expliciily
assumed that under the action of both body forces and surface forces, the
body is in equilibrium.

Let P be a point inside the body with coordinates (x, y, z). Let the bodv
be cut into two parts C and I3 by a plane 1-1 passing through point P,
as shown in Fig. 1.2, If we consider
the free-body dingrams of C and D,
then eochi part is in equilibrium
under the uaction of the externally
applied  forces and the internally
distributed forces across the inter-
face. Inpart D, let A4 bea small arca
surrounding  point P. In part C, the
corresponding  area at P ois AL
These two arcas are distinguished by
their outward drawn normals 'n ard

I
# . The action ot part C on A4 at

point P can be represented by force

Fig. 1.2 Free body diagrams of a body

1
cut into two parts vector AT, and the action of part D

on A4’ at I can be represented by force vector AT We assune that as

1 . . . P
AA tends to zero, ratio AT/AA tends 1o a definite Timits and Sather, the
moment of the forces acting on aica A4 whout any poins within the nren
vanishes in the Jimit. The limiting vector is writton s
I 1
AT  dT ! (.n
lim = =T

2440 A 4 ) (/“1 A
Similarly, at point P’, the action of part D on C as 347 tends to zero, ain
be represented by a vector

1 |
AT _dT
JA >0 At - d4a

1 1
Vectors T and T’ are called the stress vectors and they represent forces per

unit area acting respectively at P and P’ on planes with outward drawn
1 1
normals n and »'.
1

We further assume that stress vector T representing the action of C on
|

D at P is equal in magnitude and opposite in direction to stress vector 77
representing the action ¢f D on C at correspending point P'. This assump-
tion is similar to Newtou's third lTaw which is applicable to particles. We
have thus

T =—1T (1Y

Analysis of Si.ess 3



If the body in Fig. 1.1 is cut by a different plane, 2-2 passing through the
same point P, then the stress vector representing the action of C, on D, will

2
be represented by T (Fig. 1.3), i.e.

In general, stress vector T acting at
point P on a plane with outward

1
drawn normal n will be different from

2
stress vector T acting at the same
point P, but on a plane with outward

drawn normal 121 Hence the stress at
a point depends not only on the
location of the point (identified by
coordinates X, y, z) but also on the
plane passing through the point (iden-
tified by direction cosines n,, ny, n, of
Fig. 1.3 Body cut by another plane the outward drawn normal).

1.3 The State of Stress at a Point

Since an infinite number of planes can be drawn through a point, we get
an infinite number of stress vectors acting at a given point, each stress
vector characterized by the corresponding plane on which it is acting.
The totality of all stress vectors acting on every possible plane passing
through the point is defined to be the state of stress at the point. It is the
knowledge of this state of stress which is of importance to a designer in
determining the critical planes and the respective critical stresses. It will be
shown in Sec. 1.6, that if the stress vectors acting on three mutually per-
pendicular planes are known, we can determine the stress vector acting on

any other arbitrary plane.

1.4 Normal and Shear Stress Components

. ;
Let T be the stress vector at point P acting on a plane whose outward drawn
normal is n, (Fig. 1.4). This can be resolved into twc components, one along
the normal » and the other perpendicular to n. The component parallel to
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nis called the normal stress and is generally denoted by .. The compo-
nent perpendicular to n is. known as
the tangential stress or shear stress
component and is denoted by .. We
have, therefore, the relation:

n
ag

—3
<
-3

l ;12= "2 + 7 (1.4)

n where, Iﬂ' l is the magnitude of the

n
resultant stress. Stress vector T can
also be resolved into three compo-
nents parallel to the x, y, z axes. If
these components are denoted by

n n n
Fig. 1.4 Resultant stress vector, normal Ty, Ty, T:, we have
and shear stress components

PP b Tp+T2 (09

1.5 Rectangular Stress Components

Let the body B, shown in Fig. 1.1, be cut by a plane parallel to the yz
plane. The normal to this plane is parallel to the x axis and, hence, the
plane is called the x plane. The resultant stress vector at P acting on this

z
will be TI. This vector can be resolved into three components parallel to
the x, y, z axes. The component parallel to the x axis, being normal to the
plane, will be denoted by o,. The components parallel to the y and z axes
are shear stress components and are denoted by 7.y and <.. respectively
(Fig. 1.5.)

In the above designation, the first subscript x indicates the plane
on which the stresses are acting and the second subscript (y or z) indicates
the direction of the component. For example, tx, is the stress component
on the x plane in y direction. Similarly, 7, is the stress component on
the x plane in z direction. To maintain consistency, one should have denot-
ed the normal stress component as 7, This would be the stress component
on the x plane in the x direction. However, to distinguish between a normal
stress and a shear stress, the normal stress is denoted by ¢ and the shear
stress by .

At any point P, one can draw three mutually perpendicular planes, the
x plane, y plane and the z plane. Following the notation mentioned above,
the normal and shear stress components on these planes are

Analysis of Stress 5



Gxs Txyy, Taz ONN X plane
Gy, Tyz» Tyx ON Yy plane
Oz, T:x, Tzy ON Z plane.

y A

Fig. 1.5 Stress components on x plane

These components are shown acting on a small rectangular element
Fig. 1.6.

Ay 4 O'y
| LTy
S Tyz ~
L
: L~ Tzy | 3 Oy
o-x ——* ' '
J Zx | Tz
o T
//TyT'; -~
!'O'y
P
X

Fig. 1.6 Rectangular stress components
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One should observe that the three visible faces of the rectangular element
have their outward drawn normals along the positive x, y and z axes res-
pectively. Consequently, the positive stress components on these faces will
also be directed along the positive axes. The three hidden faces have their
outward drawn normals in the negative x, y and z axes. The positive stress
components on these faces will, therefore, be directed along the negative
axes. For example, the bottom face has its outward drawn normal along the
negative y axis. Hence, the positive stress components on this face, i.e., ay,
Tyx and t,;, are directed respectively along the negative y, x and z axes.

1.6 Stress Components on an Arbitrary Plane

It was stated in Sec. 1.3 that a knowledge of stress components acting on
three mutually perpendicular planes passing through a point, will determine
the stress components acting on any plane passing through that point. Let
the three mutually perpendicular planes be the x, y and z planes and let the
arbitrary plane be identified by its outward drawn normal » whose direction
cosines are #y, ny, and n,. Consider a small tetrahedron at P with three of
its faces normal to the coordinate axes, and the inclined face having its
normal parallel to n. Let A be the perpendicular distance from P to the
inclined face. 1f the tetrahedron is isolated from the body and a free-body
diagram is drawn, thenit will be in equilibrium under the action of the surface
forces and the body forces. The free-body diagram is shown in Fig. 1.7.

Fig. 1.7 Tetrahedron at point 2

Since the size of the tetrahedron considered is very small and in the limit
as we are going to make /& tend to zero, we shall speak in terms of the

n
average stresses over the faces. Let T be the resultant stress vector on face
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