1 HE DIGITAL WAY

MACRO-II ASSEMBLY LANGUAGE
_ PROGRAMMING (PDP17) ™

-,

~JF PETERS, I

. 8662818

e § &

3

. e 238

] B H

1 2

i

)]

% & A
v Lt A st ol

The Digital Way:

MACRO-11 Assembly Language
Programming (PDP-11™)

).F. Peters, llI

Saint John’s University
Collegeville, Minnesota

Reston Publishing Company, Inc.
A Prentice Hall Company
Reston, Virginia

Library of C ()ngreirs Cataloging in Publication Data

Peters, James F. "
The digital way.

1. PDP-11 (Computer)—Programming. 2. Assembler
language (Computer program language) 1. Title.
QA76.8.P2P48 1985 001.64°2 84-18243
ISBN 0-8359-1315-5

Interior design and editorial supervision by Alice Cave

Trademarks: .

Digital Equipment Corporation: DEC, PDP, UNIBUS, VAX, DECMATE, RSTS, RSX.
IBM: System 360/370, series 1

CDC: Cyber, COMPAS, Cyber 70

Copyright 1985 by Reston Publishing Company, Inc.
A Prentice Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be reproduced in any way or by any means
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

To Kathie

Foreword

Why would someone want to read a book about assembly-language coding
in 19857 Everyone knows that assemblers are passe, and that even ‘‘higher-
order’’ languages are being phased out by ‘‘program generators’’ and turnkey
packages. Well ‘‘everyone’” is wrong. There are more people using assemblers
today than when they were first introduced about thirty years ago.

Assemblers are here to stay. Every serious programmer, whether a profes-
sional or a hobbyist, will have an assembler available in his toolkit. Commu-
nicating to a computer in its own terms gives the programmer an additional level
of control that is lacking when he uses an intermediary (i.e. someone else’s
compiler). It requires additional effort, additional skill, and additional knowledge
to exercise this control, but it is sometimes advantageous, or even essential, to
do so. We can make a rough analogy to using a manual rather than an automatic
shift in a car. The manual shift requires more effort, skill, and knowledge, but
can result in more efficient use of the car (more miles per gallon of gas). And
in driving on icy roads, the additional control can help recover from, or even
avoid dangerous skids. But automatic shifts make it possible for many people
to drive who would not otherwise be able to do so. So, too, with programmers.

I have been in the computer business for thirty-four years. For the first
seven of these years my coding was done in machine language. I saw very little
advantage to be gained by using such advanced tools as assemblers until |
encountered my first binary machine with a “large’” 4096-word magnetic-core

Xiii

Xiv

Foreword

memory (until then, the computers I had been using were all decimal machines
with relays or rotating drums for memory). When FORTRAN came along about
a year later, it was a godsend. Even though it produced code that ran relatively
slowly and used 50 percent more machine capacity, I could now have the ‘‘users’’
do their own coding for their trivial problems, while the efforts of my staff could
be devoted to the larger or more difficult ones, using the more efficient assembler.
The “‘dilettantes’” and ‘‘amateurs’’ could now code their own programs, while
the “‘professionals’ stayed with machine and assembly language coding. But
soon, machines became bigger, faster, and relatively less expensive, and even
professionals recognized that it was often cost-effective to use compilers. The
rapid growth in the demand for computer programs soon outstripped the ability
of the professional programmers to keep up and the capacity of schools to train
more. And so, assembly-language coding was relegated to those applications
which required the ultimate performance of computers.

The discovery of assemblers has been repeated several times. When control
engineers switched from relays and analog controls to micro-computers and
digital controls, they, too, started with machine-language coding. In the late
"60s, articles appeared in the engineering magazines explaining the advantages
of using an advanced tool: an assembler. In the middle ’70s, similar articles
appeared in the magazines devoted to the hobbyist who put together his own
computer.

Today, the assembler is being approached from a slightly different direc-
tion. There are approximately a million ‘*home’’ or ‘‘personal’’ computers in
use now. Most of these computers are being programmed with BASIC. The
implementers of the BASIC interpreters recognized the need to use machine-
language code to allow some control of the detailed capabilities of the underlying
microcomputer, and to speed up certain functions. This led to a crude machine-
language capability to be incorporated in the form of PEEK and POKE com-
mands. It didn’t take long before the popular computing magazines started pub-
lishing articles on the advantages of assemblers over the clumsy POKEing of
decimal translations of machine-language codes.

And so, even today, assemblers are being touted as an advanced way of
exercising the detailed control of, or achieving the speed and capacity inherent
in computers.

Assemblers have died many times. We hear over and over again that
computer hardware is cheaper than software. I, too, believed this fairy tale. But
one time, when I proposed to a project manager that he could save a million
dollars in software development for his project by simply doubling the memory
size in the computer we were using, he pointed out the fact that we were going
to make 500 or more systems, each with two computers, and multiplying the
“‘cheap’” memory price by 1000 came to more than a million dollars. The
development cost of the software may have been greater than the production
cost of a single computer, but amortized of 1000 copies, the unit software cost
was negligible.

Foreword XV

Of course, that was more than fifteen years ago. Today, things are different.
Or are they? Let us take a more recent example: the Space Shuttle. That project,
too, suffered from an overrun in the use of memory. And so, IBM installed a
“*double-density’” memory that almost doubled the capacity. However, because
an additional pound of non-payload weight costs $65,000 and an additional
kilowatt of power consumption costs $35,000 in the Shuttle’s operation, the cost
of the additional memory was $.27 per bit, IN ADDITION TO the price IBM
charged NASA for the memory and the paperwork necessary to change the
specifications of the computer!

For more than twenty years, I made a career out of using assembly code
to squeeze programs into the available computer capacity to execute within the
required time.

Even as [write this, I am involved in a project that has overrun the capacity
of the computer selected and is taking so long to execute that the system is
unacceptable without adding an additional computer. Needless to say, the pro-
gram was coded in a “‘higher-level’” language.

In summary, there are enough occasions requiring coding at the machine
level, that no serious programmer should be without an assembler in his toolkit.
As an added incentive, learning how to use an assembler gives the programmer
an insight into the functioning of a computer and the representation and orga-
nization of data that he would not get otherwise. Reading this book will get you
started.

David Feign, Ph.D.
Santa Ana, California

Preface

This text was written with the idea that at each step model programs, lots
of examples, will lead to parallel programs. These model programs can serve
as a guide for those who are just learning to program on the assembly language
level. They also can be helpful to those who want to tune their knowledge of
the assembly language level.

It helps a great deal in the beginning to have assembly language to imitate,
not fragments but complete, runnable programs. As much as possible in this
text, complete sample programs have been presented. These programs have been
written with the principles of structured programming in mind.

This text was also written to encourage new assembly language program-
mers to design their own instructions. It makes no sense at all to approach
assembly language programming with the idea that only the native instructions
provided by an assembler will be used. New instructions can be created, designed,
implemented using subroutines like those found in MACRO-11. New instructions
can also be developed using macros. The combination of subroutines and macros
offer a powerful incentive to invent, to design, to learn the art of assembly
language programming.

Learning to program on the assembly language level is a good way to get
closer to the organization of a particular computer. Assembly language pro-
gramming entails a keen perception of the way memory is organized inside a
computer. An assembly language programmer needs to get very close to the

XVii

Xviii

Preface

pulse of a machine, its registers, its methods of managing memory, its execution
cycles, its native instruction repertoire.

In terms of both machine organization and assembly language program-
ming, this text works on two levels. With machine organization, both generic
concepts as well as machine-specific features are presented. With assembly
language programming, both the generic notion of assembly in terms of either
the two pass or one pass method as well as MACRO-11 programming specifics
are presented. Finally, both the generic notion of macro assembly as well as the
specifics of MACRO-11 macro assembly are presented.

The aim of this book is to give a perspective which goes beyond the
demands of one computer system. The aim of this book is to develop a sense
of what it takes to write an assembly language program on any machine as well
as a PDP-11 or DEC Professional computer.

Assembly language programming on a PDP-11 is a pleasure. Its instruction
repertoire is rich, broadly conceived, workable, and useful. It is a good system
to learn on.

Note for the Student

You will probably find the selected solutions to the exercises and lab projects
helpful. To try out the programs in the chapters or in the selected solutions, you
will want to set up a copy of the macro library called paslib.mac. This is in
Appendix H.

There are two versions of paslib.mac. The version in Appendix H.2 will
be useful for RT-11 or RSTS users. The version of paslib.mac in Appendix H.3
is for RSX-11 users, since it relies entirely on keyboard registers instead of
system i/0 macros (.ttyout and .ttyin) available in RT-11.

To set up a version of one of these macro libraries in your account, use
an editor to type them into a machine (a PDP-11, any model, or a professional
with the tools package). Instructions for setting up the macro library using the
librarian program are given in Appendix H, also.

You might want to set up a coop so that these libraries can be shared,
rather than keep a copy of the macro library in each person’s account. There
are lots of programs you can write without a macro library like the one in
Appendix H. A macro library like paslib.mac will just make life easier for you,
especially in the beginning.

Each chapter has a summary and review quiz, which you will probably
find helpful in preparing for exams. There are also references to outside reading
you might want to follow up in connection with this book.

Finally, I really would appreciate any suggestions you might have. Please
let me know if you would like to see any additional and/or different things in
the summaries or in the examples or selected solutions which are not there now.

Preface Xix
I really want to encourage you to write to me, if you have any questions, sample
programs, suggestions. You can reach me by writing to:

Computer Science Department
St. John’s University
Collegeville, Minnesota 56321

Note to the Instructor

Copies of all of the programs and libraries are available on 5V, quad density,
RX50 diskettes used on Rainbow-100s or on a DECMATE. These can be pur-
chased by writing to me at the above address.

In using this book, you might want to try the following scheme:

Topic Classtime
1. Assign chapters 1 and 2 to be read 0 hours
2. Start with chapter 3 (examine memory to get started without
a macro library) 2 hours
3. Illustrate the uses of macros in chapter 4 (you will need pas-
lib.mac in Appendix H to do this) 1 hour

Note: Try creating simple macros without arguments to dem-
onstrate, further, the idea of inventing new instructions. R.
Pattis, Karel the Robot: A Gentle Introduction to the Art of
Programming, John Wiley & Sons, N.Y., 1981, ch. 2, is
helpful, here. Try
begin:

drawrobot

drawramp

drawarrow

drawbeeper

.exit

.end begin

without any reference to the macros themselves at first, to draw
a picture like the following one:

Then create the macros to define the instructions, using the
chapter i/0 macros, which come from Appendix H.

XX

Preface

4. Control Structures, chapter 5 (this chapter draws a parallel
between the control structures found in Pascal and those that
can be put together in an assembler program) 2 hours
5. Stacks and queues, chapter 6 2 hours
NOTE: At this point, it is helpful to look at the material in
chapter 2 on base conversions
6. Closed routines, chapter 7 (problems from cryptography and

operating systems have been brought into this chapter). 2.5 hours
7. Assign chapter 8 to be read 0 hours
8. Directives, chapter 9 (stress uses of list files in debugging and

use of storage directives) 1 hour
9. /0O, chapter 10 (begin creating personalized i/0 routines to

manage traffic to-and-from a keyboard) 1 hour
10. Arrays, chapter 11 (intensive) 1.5 hours
11. Advanced i/o, chapter 12
12. Sidelights (assign to be read) 0 hours
13. Chapter 14 (random numbers) 1.5 hours
14. Chapter 15 (assign to be read) 0 hours
15. Chapters 16—17 (intensive) 3 hours
16. Chapter 18 (recursion) 1 hour
17. Chapter 19 (traps) 1 hour
18. Chapter 20 (files) 1 hour

Organization of the Text

Exercises are easier than lab projects. They take less time. They are more for
individual work. Lab Projects have been designed with a team approach in mind.

A key aim of this text has been to encourage writing macros from the
beginning. These are followed, soon afterward (in chapter 7), with an introduc-
tion to subroutines. By chapter 10, it should be possible to write subroutines to
deal directly with the problem of terminal i/o.

Chapters 1-7 are i/0 macro dependent. Chapters 9-20 rely on the free use
of both macros and closed routines. Chapters 15-18 demonstrate how new,
complete macros with parameters can be created.

Acknowledgments

I want to pay special tribute to Mark Tinguely and Susan Rosenberger at St.
John’s University. They have worked with me for several years, helping to
prepare programs, debugging and smoothing out programs and macros. Mark
Tinguely and Bob Meierhofer produced the bulk of the solutions to the exercises
and lab projects.

L also wish to thank the following persons for their help and encouragement:

Preface XXi

Lori Kaufenberg, Patrick Holmay, Geoff Brunkhorst, Paul St. Michel, Diana
Messina, David Weigel, Dr. Hamed Sallam, Dr. Sylvester Theisen, Ruth O.
Devolder, Gordon Tavis, O.S.B., Richard Pletcher at Compusolve, Hank Marvin
at Western Electric, Leon J. Schilmoeller at 3M, and Ginger Delacey and Alice
Cave at Reston.

J.E. Peters, III
Collegeville, Minnesota

Contents

Foreword xiii

Preface xvii

1 Machine Organization 1
1.0 Aims,I

1.1 Introduction, 1

1.2 Some Terminology and Useful Symbols, 2

1.3 Von Neumann Machine, 10

1.4 Computer Organization in Terms of Computer Structures, 11

1.5 PDP-11 Organization, 17

1.6 Summary, 21

1.7 Exercises, 23

1.8 Lab Projects, 24

1.9 References, 24

1.10 Review Quiz, 24

2 Ways to Represent Numeric Information 27
2.0 Aims, 27
2.1 Introduction, 27
2.2 A Crossreference Symbol Table for Three Number Systems, 28

vi

Contents = | &

- A D &

2.3 The Relation Between Octal and Binary Numbers: Three-in-One, 31
2.4 Conversion of Binary Numbers to Octal: Building Bytes, 32
2.5 Conversion From Binary to Decimal, 33
2.6 Conversion of a Decimal Number to Another Base, 33
2.7 Sums with Octal and Binary Numbers, 36
2.8 Computing Products, 39
2.9 Methods of Doing Arithmetic with Signed Numbers
on Calculators and Computers, 40
2.10 Summary, 44
2.11 Exercises, 44
2.12 Lab Projects, 46
2.13 References, 49
2.14 Review Quiz, 49

Building an Assembly Language Program 51

3.0 Aims, 51

3.1 Introduction, 51

3.2 Comments, 52

3.3 The Declaration Part: Defining Labels and Symbols, 53

3.4 Assembly Language Instructions, 58

3.5 Instruction Operands, 63

3.6 How to Determine the Byte Range for a Memory Dump, 73
3.7 Other Operand Addressing Modes, 73

3.8 Overview of Addressing Modes, 79

3.9 How to Invent New Instructions, 80

3.10 In Search of the Art of Assembly Language Programming, 85
3.11 Summary, 86

3.12 Exercises, 87

3.13 Lab Projects, 88

3.14 Review Quiz, 91

Beginning 110 93

4.0 Aims, 93

4.1 Introduction, 93

4.2 Two String-handling Macros: Write and writeln, 94
4.3 Readln: A Numeric Input Macro, 94

4.4 Writeval: A Numeric Output Macro, 98

4.5 Example: Combined Use of the I/O Macros, 99
4.6 Bug Clinic: Limitation of an sob Loop, 99

4.7 Writestring: A String-handling Macro, 102

4.8 Readstring: A String-Input Macro, 105

4.9 Example: A Von Neumann Machine Timer, 107
4.10 Another Example: Counting Bytes, 107

4.11 Summary, 108

4.12
4.13
4.14
4.15

8662818

Exercises, 110
Lab Projects, 111
Reference, 112
Review Quiz, 112

Control Structures 115

5.0
541
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5:10

Aims, 115

Introduction, 115

PDP-11 Conditional Branch Instructions, 116
The Compare Instruction: cmp, 121
Repetitive Control Structures, 124
The sob Instruction, 134
Summary, 135

Exercises, 135

Lab Projects, 138

Reference, 138

Review Quiz, 138

Stacks and Queues 141

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Aims, 141
Introduction, 141
Stacks, 142
Queues, 157
Summary, 159
Exercises, 165
Lab Projects, 166
Reference, 166
Review Quiz, 166

Closed Routines 167

7.0
7.1
7.2
7:3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Aims, 167

Introduction, 167

Internal and External Subroutines, 169
Refinement: Local Variables, 176
Libraries of Subroutines, 180

Sample Library, 182

Coroutines, 187

Uses of Coroutines, 190

Another Example: Problem of Dining Philosophers, 190
Summary, 198

Exercises, 198

Lab Projects, 200

References, 206

Review Quiz, 206

Contents

Vii

viii Contents

8 Assembly: An Introduction 209
8.0 Aims, 209
8.1 Introduction, 209
8.2 What is an Assembler?, 209
8.3 What Happens at Assembly Time?, 210
8.4 Summary, 218
8.5 Exercises, 218
8.6 Lab Projects, 220
8.7 References, 220
8.8 Review Quiz, 221

9 Directives 223
9.0 Aims, 223
9.1 Introduction, 223
9.2 Directives: A Preliminary List, 224
9.3 Listing Control Directives, 224
9.4 Storage Directives, 228
9.5 Program Section Directives, 230
9.6 String-handling Directives, 233
9.7 Summary, 235
9.8 Exercises, 237
9.9 Lab Projects, 239
9.10 References, 240
9.11 Review Quiz, 240

10 1O 243
10.0 Aims, 243
10.1 Introduction, 243
10.2 Result Routine Enhancements, 244
10.3 Tools for Reading, 246
10.4 Expansion of the I/O Subroutine Library, 251
10.5 Example: Building a Crossreference Table, 251
10.6 Another Example: Computing the GCD with a Recursive Routine, 252
10.7 Programming Hint, 254
10.8 Summary, 254
10.9 Exercises, 260
10.10 Lab Projects, 263
10.11 References, 264
10.12 Review Quiz, 264

11 Arrays 267
11.0 Aims, 267
11.1 Introduction, 267
11.2 Some Programming Tools, 268

12

13

14

1.

11

1.
11.

11

1.
9
11.
11

11

11

1.
11
1.

S IR e N I N

10

12
13
14

Contents

Two Ways to Handle Array Indices, 270
How to Utilize Arrays, 271

Substrings, 275

Concatenating Substrings, 278
Programming Hint, 280

Extended Precision Products with Arrays, 281
Programming Hints, 286

Summary, 287

Exercises, 287

Lab Projects, 290

References, 291

Review Quiz, 292

Advanced IO 293
12.0

12.

1

12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

12.
12.

10
11

Aims, 293

Introduction, 293

The Bedford Method, 293

The asr Instruction, 296

The .radix Directive, 297
Computing Ratios in Any Radix, 298
A New Use of the mul Instruction, 301
Summary, 302

Exercises, 304

Lab Projects, 306

References, 307

Review Quiz, 307

Sidelights 309
13.0

13.

1

13:2
13.3
13.4
13.5
13.6
13.7
13.8

Aims, 309

Introduction, 309

The AMA Function Control Directive, 309

Another Programmer’s Tool: The Crossreference Table, 312
Load Maps, 312

Summary, 317

Exercises, 319

Lab Projects, 319

Review Quiz, 321

Results 323
14.0

14.

1

14.2
14.3
14.4
14.5

Aims, 323
Introduction, 323
Random Numbers, 324
Cryptography, 326
Summary, 330
Exercises, 334

ix

