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Chapter 1

PRELIMINARIES

In this chapter we establish notation and terminology. We also
state some standard facts in a form convenient to us. Section 1 is de-
voted to abelian topological groups and section 2 to topological vector
spaces. In section 3 we give some more or less known facts about addi-
tive subgroups of rRD.

1. Topological groups

The groups under consideration will be mostly additive subgroups
or quotient groups of vector spaces. Therefore we shall apply the addi-
tive notation mainly, denoting the neutral element by 0. Naturally,
we shall keep the multiplicative notation for groups of, say, non-zero
complex numbers or linear operators. The additive groups of integers
and of real and complex numbers will be denoted by 2, R and C, re-
spectively. The multiplicative group of complex numbers with modulus
1 will be denoted by S.

By a character of a group G we mean a homomorphism of G into
the group T: = R/Z. We shall frequently identify T with the interval

(= %,%]. The canonical projection of R onto T will be denoted by
p. Thus p(x) = x for x = (—%,%]. The value of character X at
a point g will be denoted by x(g) or, sometimes, by <x,g>.

Now, let G be an abelian topological group (we do not assume
topological groups to be Hausdorff). The set of all continuous charac-

ters of G, with addition defined pointwise, 1is an abelian group
again. We call it the dual group or the character group of G and de-

note by g .

Characters are usually defined as homomorphisms into S. Such a
definition is convenient in harmonic analysis, when we consider com-
plex-valued functions "synthesized" of continuous characters (such a
situation will take place in chapter 4). However, it leads to the mul-
tiplicative notation on G which is inconvenient in duality theory
when we try to maintain symmetry between G and G (especially when
we consider topological vector spaces). There are also certain tech-
nical reasons for which we have chosen T instead of S.

We shall have to consider various topologies on G . The dual



group endowed with a given topology 1 will be denoted GT. By Gé,

G; and G;c we shall denote the dual group endowed, respectively,
with the topology of uniform convergence on finite, compact and pre-

compact subsets of G (i.e. with the topology of pointwise, compact
and precompact convergence). The second one is usually called the com-
pact-open topology.

Now, let A be a subset of G. If ¥ 1is a character of G, then

we write
[x(A)] = sup {|x(g)|: g € A}.
The set
fxea : |xa] s 4
is called the polar of A in G ; we denote it by Ag. If the mean-
ing of G 1is clear, we simply write A° instead of Ag. By Ag, Ag

and Agc we denote the set A° endowed with the topology of point-
wise, compact and precompact convergence, respectively.

If A 1is a subgroup of G, then

2% = {(x € G : x|, = 0};
this follows, for instance, from (1.2). Thus 2% is a closed subgroup
of -G;; we call it the annihilator of A.

A subset A of G 1is said to be guasi-convex if to each ge G\ A

there corresponds some % € A° with |x(g)| > %. The set

N {gec: |xia)] = 7

xea®

is evidently the smallest quasi-convex subset of G containing A; we
call it the gquasi-convex hull of A. We say that G is a locally

quasi-convex group if it admits a base at zero consisting of quasi-
-convex sets. Observe that if G 1is a Hausdorff locally gquasi-convex
group, then it admits sufficiently many continuous characters (i.e.
continuous characters separate the points of G). Observe also that the

polar of any subset of G 1is a quasi-convex subset of each of the

groups Gp, Gc and G;C; therefore all the three groups are locally
quasi-convex.

(1.1) ErmaAa. Let g,h be two elements of an abelian group G. If

X 1s a character of G such that |x(g)|, |[x(h)| and |x(g + h)|
are less than %, then x(g + h) = x(g) + x(h).



Proof. One has

I

x(g + h) = x(g) + x(h) (mod 2),
i.e.

(1) x(g + h) - x(g) - x(h) € 2.
From our assumption we obtain

(2) [x(g + h) - x(g) - x(h)]

w |-
+
W=
+
w |
1]
(=

S Ixtg + h)| + |x(g)] + |x(h)| <

Now (1) and (2) imply that x(g + h) - x(g) - x(h) = 0. =

(1.2) LEMMA. Let x be a character of an abelian group G. Let
m be a positive integer and g an element of G, such that
x(kg) < % for k =1,...,m. Then x(mg) = mx(g).

Proof. By the preceding lemma, for each k =1,...,m-1, we have
x((k + 1)g) = x(kg) + x(g). Thus

m-1 m-1 m-1

= x((k + 1)g) = = x(kg) + = x(g9),

k=1 k=1 k=1
which means that x(mg) = mx(g). =

Let A Dbe a subset of an abelian group G. By gp A we denote
the subgroup of G generated by A. For each m=1,2,..., we de-
note

.,a_ € A}.

1 e m P &1r-- -

(1.3) PROPOSITION. Let G be an abelian topological group. The

polars of compact (resp. finite, precompact) subsets of G forma base

at zero in Gc (resp. in Gp’ Gpc)'

Proof. Let U be a neighbourhood of zero in Gé (resp. in G;,
G;c)' There exist an € > 0 and a compact (resp. finite, precompact)
subset Y of G, such that the set W = {y € G : [x(Y)| < €} is
contained in U. Choose an integer m > (48)-1. The set A = Y" is
compact (resp. finite, precompact). By (1.2), for each X € Ao, we

1 1 o
< = £ ==
have |x(Y)]| = m|x(A)| S 4y <& Thus A" cW. =

By NO(G) we denote the family of all neighbourhoods of zero in

an abelian topological group G (we do not assume neighbourhoods to



be open).

(1.4) LEMMA. A character x of an abelian topological group G is

continuous if and only if x € U° for a certain U e NO(G).

Proof. The necessity of the condition is trivial. To prove the

sufficiency, choose any ¢ > 0. We can find an integer m>(45)_l
and then some W € NO(G) with W™ c U. By (1.2), we have |[x(W) | £
%|x(U)| s j% < £. This means that x is continuous at zero. =

(1.5) PROPOSITION. The polars of neighbourhoods of zero in an abe-
lian topological group G are compact subsets of Gpc’

Proof . Choose any U € NO(G). The group G; is compact because
we may identify it with a closed subgroup of the product TG (see also
(1.8)). Since Ug is a closed subset of G;, it 1is enough to show
that the identity mapping Ug - Ugc is continuous.

Choose any «k € U° and let W be a neighbourhood of «k in U;c.
By (1.3), there is some precompact subset A of G such that

Ww:=(c+ 2% nu®cw.
Next, we can find some V € NO(G) with V3 c U. Since A is pre-
compact, there exist some Jyr-+-r9, € A such that

n

1 A C o ¥ + V.
(1) CER
The set

w":{Xer-|X(g.)—K(g)|<—l— for i =1 n}

: i i = 12 reety

is a neighbourhood of «k in U;. It remains to show that W” c W'.

So, choose any x € W’. We have to show that x - k € 2°. Take
any g € A. In view of (1), we may write g =9; + h for some 1i =
l1,...,n and some h € V. Now, from (1.2) we obtain

1 1 . L4 1
|X(V)!§-§|X(U)| §E and IK(V)I§§IK(U)I §-1—§.
Hence
0= (@] s [xlgy) = lg)| + [x(W) ] + [x(h)] s T5= - =
= i i - 12 4°

An abelian group G 1is called divisible if to each g e G and
each n=1,2,... there corresponds some h € G.with nh = g.



(1.6) PROPOSITION. Let H be a subgroup of an abelian group G.
Every homomorphism of H into a divisible group can be extended to a

homomorphism of G.

For the proof, see e.g. [38], Theorem (A.7).

Let G,H be abelian topological groups. An isomorphism ¢ of G
onto H 1is called a topological isomorphism if ¢ and ¢-1 are con-
tinuous. If there is a topological isomorphism of G onto H, thenwe
say that G and H are topologically isomorphic and write G~ H. An
injective homomorphism ¢ : G » H 1is called a topological embedding if
¢ 1is a topological isomorphism of G onto the group ¢(G) endowed
with the topology induced from H.

(1.7) PROPOSITION. Let Gl""’Gn be abelian topological groups.
There is a canonical topological isomorphism between (Gl X s.. X Gn);
and (Gl)c X 4. X (Gn)c.

This is a standard fact. For the proof, we refer the reader to
[38], (23.18) - the assumption there that Gys-++,G, are locally com-

pact- is inessential. For infinite products, see (14.11) below.

Let H be a subgroup of an abelian topological group G. We say
that H 1is dually closed in G if to each g e€G\H there corresponds
some ¥ € H° with x(g) # 0 (this is egqguivalent to the assertion that
H 1is a quasi-convex subset of G). Next, we say that H dually
embedded in G if each continuous character of H can be extended to
a continuous character of G. Observe that dually closed subgroups are
closed. Observe also that each continuous character of H can be ex-

tended in a unique way to a continuous character of H.

Let us recall shortly basic facts concerning the Pontryagin - van
Kampen duality theorem. The proofs can be found e.g. in [38], §24. By
a compact (resp. locally compact) group we shall mean a group which is
compact (resp. locally compact) and separated. Locally compact abelian
groups are called LCA groups.

(1.8) PROPOSITICN. Let G be an LCA group. Then Gé = Géc is an
LCA group, too, and the evaluation map is a topological isomorphism of
G onto (Gé)é. If H is a closed subgroup of G, then H is dual-

ly closed and dually embedded. Moreover, the caponical mappings

Gé/Hg > H; and (G/H); > Hg are both topological isomorphism. If G



is compact, G; is discrete. If G 1is discrete, Gd is compact.

There are canonical topological isomorphisms Rc + R, Zc - T, Té +> 2.

(1.9) PROPOSITION. Let G Dbe an LCA group. Then there exist an
n=20,1,2,..., a compact group K and a discrete group D, such that

G 1is topologically isomorphic to a closed subgroup of R? x K x D.

Proof. Being an LCA group, Gc contains an open subgroup A -
R x H for some n = 0,1,2,... and some compact group H ([69], Theo-
rem 25 or [38], (9.14)). Let ¢ : G - GA/A be the natural projection.

Every (abelian) group is a quotient of a free one. So, we can find a

free abelian group F and a homomorphism ¢y of F onto G‘/A. Let

{fi}iel be a system of free generators of F. For each 1i€1I, choose
some Xi e G with ¢(xi) = w(fi). Let o : F > G be the homo-
morphism given by o(fi) = X3 for i1 € I. We obtain the following

commutative diagram:

c¢// \\\ﬁ
¢ —2% 5 g 7/a

The formula

pla,f) = a + o(f) (aea, feF)
defines a homomorphism p : A x F - G . We shall prove that
(1) p(A x F) =G .
To this end, choose an arbitrary x € G . Since Y(F) = G‘/A, we can
find some f € F with y(f) = ¢(x). Then d(o(£)) = Y(f) = o(x),
which means that a: =yx - o(f) € ker ¢ = A. Thus x = a+o(f) =
pla,f) € p(A x F), which proves (1).

Let us endow F with the discrete topology. Since A x {0} is an
open subgroup of AxF and p 1is a topological iscomorphism (in fact,
an identity) of A x {0} onto the open subgroup A of Gc’ it follows

that p : A x F > Gé is both continuous and open. Consequently, Gc

(A x F)/ker p. So, in virtue of (1.8), we have

G ~ (Gc)

o~ ((A x F)/ker p)é -~ (ker p)g.

In other words, G 1is topologically isomorphic to a closed subgroup of



- — S R R
(A x F)c. From (1.7) we get (A x F)c Ac X Fc R x Hc x Fc and

it remains to observe that Fé is compact and Hé discrete. =

The completion of an abelian topological group G will be denoted
by G. We shall identify G with a dense subgroup of G. The clo-
sures in G of elements of any given base at zero in G form a base
at zero in G ([23], Ch. III, §3, Proposition 7).

(1.10) PROPOSITION. Let Go be a dense subgroup of an abelian to-
pological group G. Let H be the closure in G of a closed sub-
group HO of Go and let ¢ : G » G/H be the canonical projection.
Then the canonical bijection GO/Ho - ¢(GO) is a topological isomor-
phism of GO/Ho onto a dense subgroup of G/H.

This is Proposition 21 of [23], Ch. III, §2.

(1.11) PROPOSITION. Let G Dbe an abelian topological group. If G

is a k-space, then GA is a complete group.

Proof. The space TG of continuous mappings from G to T is
complete in the compact-open topology ([52], Ch. 7, Theorem 12). It
remains to observe that G is a closed subset of TG. L]

(1.12) PROPOSITION. Let G be an abelian group and B a family of
subsets of G satisfying the following conditions:

(a) every member of B contains zero;
(b) to each U € B there corresponds some V € B with -V c U;

(c) to each U € B there corresponds some V € B with V +V c U.

Then there exists a unique topology T on G compatible with the

group structure, such that B 1is a base at zero for .

For the proof, see [23], Ch. III, §1.2.
Let {Gi}iel be a family of abelian topological groups indexed
by a set I. The product of these groups is defined in the usual way;
we denote it by II Gi' It is evident that the product of a family of
iel

locally quasi-convex groups is locally quasi-convex.

Let {pij 2 Gi > Gj; i,j eI, 12 3j} Dbe an inverse system of
topological groups, that is to say, I is a directed set and, for

each pair 1i,j € I with i 2 j, a continuous homomorphism pij: Gi+

; : . _ ; L os k. .
Gj is given, such that pij pjk Py if i 2 3j 2k We define the



limit of this system in the usual way, identifying it with the appro-

priate subgroup of the product IT G, . If I 1is the set of positive
iel

integers, then we speak of an inverse sequence. Naturally, the 1limit

of an inverse system of locally quasi-convex groups 1is 1locally gquasi-

-convex. The product II G, 1is canonically topologically isomorphic
ieIl
to the limit of the inverse system II G. where K runs through all
ieKk

finite subsets of I and the projections for K o> L are defined

PxL
in the usual way.
The limit G of the inverse system {pij: Gi

to zero. If, however, I 1is at most countable and all pij are onto,

G > G; are onto. Kaplan [50], Lemma

- Gj) may be equal

then also all projections p;

4.6, proved that if {pij : Gi - Gj} is an inverse sequence of LCA

groups such that pij(Gi) is dense in Gj for all pairs is3 with
i 2 j, then also pi(G) is dense in Gi for every 1i.

Again, let {Gi} be a family of abelian topological groups.

iel
Their direct sum, denoted by > Gi’ is algebraically the subgroup of
iel

the product II G,, consisting of finite sequences (that is, an ele-
ier

of II Gi belongs to 3. G, if and only if g; = 0

iel iel
for all but a finite number of indices 1i). We shall consider on = Gi
iel

the asterisk and the rectangular topologies. To describe them, we have

ment (gi)ieI

to introduce some additional notions.
Let U be a subset of an abelian group G. For each g € U, we

define

n; = sup {n : kge U for k=1,...,n}
and g/U = (nU)-l. This means, in particular, that g/u = 0 if and
and only if kg € U for every k.

Let us suppose that, for each ielI, we are given some Ui e

No(Gi). We denote

= U= {(g;); € 3 G, : g. € U, for all i e I},

jer 1 i’iex jer 1 i i

XU, = {(g.). e > U. : 2 (g./U.) < 1}.

ieT i i’iel ieT 1 = 1" 71

Let B Dbe the family of all sets of the form > Ui where Uie NO(Gi)
iel
for every i. Similarly, let B* be the family of all sets of the



form > *U. where Ui € No(Gi) for every i. It follows from (1.12)
iel
that there is a unique topology on > Gi compatible with the group
iel

structure, for which B is a base at zero; we call it the rectangular
topology. Conditions (a) - (c) of (1.12) are satisfied trivially. Simi-

larly, it follows from (1.12) that there is a unique topology on > Gi
iel

compatible with the group structure, for which B* is a base at zero;

we call it the asterisk topology. The only non-trivial thing here is

to verify (1.12) (c) with B replaced by B*:

(1.13) LEmMA. Let {Gi} be a family of abelian topological

iel
groups and let B* be defined as above. Then to each U € B* there
corresponds some V € B* with V + V c U.

To prove (1.13), we need the following simple proposition whose
verification is left to the reader:

(1.14) LEmmMA. Let U be a zero-containing subset of an abelian
group G. Then g/(U + U) < %(g/U) for each g € U. If V is another
zero-containing subset of G and V + V c U, then (g + h)/U =
max (g/V, h/V) for all g,h € V.

Proof of (1.13). Choose an arbitrary U € B*. We have U= X * U,

: i
i€l
for some U.l € No(Gi)’ ielI. For each ie1I, we can find some
V. e N (6,) with vicu,. set v= m=xvi,
i o' i i i :
1€l
Now, take any sequences (gi)iEI and (hi)iEI belonging to V.

From (1.14) we get

1
% [(gy + hy)/U;] £ 5 3 [(gy + hy)/(Vy + V)]

ierl iel
1 1
<5 = max (g,/V., h./V.) <= = [g./V, + h./V.] < 1.
2 = i’ i i’ 'i 2 ieT i’ i i’ i
Thus (gi + hi)iEI € >X*U., which means that V + V c U. =

iel
The asterisk topology is, by definition, finer than the rectangu-

lar one. For countable direct sums, these two topologies are identi-
cal:

(1.15) FecrosTrion. Let (Gn) be a sequence of abelian topolo-

©

n=1
gical groups. Then the asterisk topology on > 'Gn is equal to the
n=1
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rectangular one.

Proof . Let Url (S NO(Gn) for n=1,2,... . We have to show that
[eo]
ZZ*Un contains a rectangular neighbourhood of zero. For each n =
n=1
s . 2 ;
1,2,..., we can find some Vn € NO(Gn) with Vn c Un. From (1.14) it

follows by induction that

(g/u,) s 2'“(g/vn) for all n =1,2,... and all ge V.
So, if (gn)n=l (S % Vn, then
n=1
> (g /U ) s = 27 %g /v) < = 270 = 1.
n=1 o B n=1 non n=1
Thus > V. c Z*U_. L]
_ n — n
n=1 n=1

In general, the rectangular topology is not equivalent to the aste-
risk one (consider, for instance, an uncountable direct sum of real
lines). In the sequel, speaking of direct sums of topological groups,
we shall always assume that they are endowed with the asterisk topology,
is a

unless it is explicitly stated otherwise. Notice that if {Gi}iel

family of locally convex spaces, then the group > Gi is topological-
ier
ly isomorphic to their locally convex direct sum.

(1.16) PROPOSITION. The direct sum of an arbitrary family of locally

quasi-convex groups is locally gquasi-convex.
An easy proof is left to the reader.

(1.17) PROPOSITION. Let G Dbe the direct sum of a family {Gi) of

ieT
Hausdorff abelian groups. For each i € I, let L G ~» Gi be the
canonical projection. If P 1is a precompact subset of G relative to
the asterisk or rectangular topology, then ﬂi(P) = {0} for all but

finitely many indices 1i.

Proof. Suppose that P 1is precompact in the rectangular topology.
Set J ={ie€1l: ﬂi(P) # {0}}. We have to show that J is finite.
Suppose the contrary. To each 1 € J there corresponds some g; € P
with ni(gi) # 0. Next, there is some U.l e No(Gi) with ni(gi) & Ui

because G.l is separated. The set U = 3 U, 1is a rectangular neigh-
ierI



bourhood of zero in G. So, there is a finite subset A of P such
that P c A 4+ U because P 1is precompact. Since A is finite and
consists of finite sequences while J is infinite, it follows that
there is an index j € J such that ﬂj(A) = {0}. Then

ﬂj(P) c nj(A + U) = ﬂj(A) + ﬂj(U) = {0} + Uj = Uj.

On the other hand, we have gj € P and ﬂj(gj) & Uj' which is a con-

tradiction. =

Let {pij g Gi - Gj; i,j eI, i< j} be a direct system of
abelian topological groups, that is to say, I as a directed set and,
for each pair 1i,j € I with i £ j, a continuous homomorphism pij:

Gi > Gj is defined, such that if i £ j £ k. Let G

Pij'Pyx T Pix

be the direct sum of the family {Gi) and let GO be the subgroup

ieT
of G generated by all elements of the form

g; - pij(gi) (i,3 € I; is3; g; €6y)

(we treat G.l and Gj as subgroups of G). We define the limit of
the system considered as the quotient group G/Go. When all groups
Gi are locally convex spaces, we obtain the usual definition of the
inductive limit.

Kaplan [50] defined the limit of the direct system as the group
G/a;. He proved that if I 1is countable, the groups Gi are local-
ly compact and all mappings pij are injective, then GO is closed
([50], Theorem 8, p. 433).

It is not hard to see that if J 1is a cofinal subset of I and
all groups Gi are locally quasi-convex, then the limit of the system

{pij 2 Gy~ Gj; i,j eI, i £ j} may be identified with the 1limit

of the subsystem {pij : Gi - Gj; i,j e Jg, 1i:<3}. The assumption

of local quasi-convexity is essential.

If I 1is the set of positive integers, then we speak of direct
sequences. In view of the last remark, when considering limits of
countable direct systems we may restrict ourselves to limits of direct
sequences.

The direct sum of a family {Gi} of locally quasi-convex

iel
groups is easily seen to be topologically isomorphic to the 1limit of

the direct system > Gi - 3 Gi} where K,L run through
ieK iel

finite subsets of I and the embeddings

{Pg1,
Py, are defined in the
usual way.
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(1.18) PROPOSITION. Let G be the 1limit of a direct sequence

{p, : G, > G ,,}

p, are topological embeddings. Then the topology of G induces orig-

of abelian topological groups, in which all mappings

inal topologies on the groups Gn' Consequently, if all groups Gn are

separated, so is G.

Proof. We may assume that (Gn)z=1 is an increasing sequence of sub-
groups of G. Let B be the family of all sets of the from
U, # Uy #+ s = WU (Us *+ o + U_)
n=1 1 n
where Un € NO(Gn) for every n. It follows directly from (1.15) that

B 1is a base at zero in G.
Fix an index m and choose an arbitrary vV e No(Gm). We are to

find some U € NO(G) with U nNn Gm c V. Naturally, we may assume that

m = 1. There is some Ul S NO(Gl) with Ul + Ul c Vv, and a simple
inductive argument allows us to find, for each n 2 2, some Un’wn S
N (G_) with W_n G c U and U_+ U_ c W_. It remains to show
o' n n n-1 n-1 n n n
that G1 n (Ul + U2 ¥ ges) €V, Set Yk = U1 kR Uk + Uk for
k=1,2,... . It is enough to show that G1 n Yk c v for every k.
For k =1, this is obvious. For k > 1, we use induction:
Gy N Y © Gy NGy N (U + con + U 4 + W)
=Gy N (U + .o + U o + (W NG _q))
€GN (Up + v + U 3 + U q) =G N Y g,

which is contained in V due to the inductive assumption. =

A topological vector space is locally convex if and only if it is
a Hausdorff locally gquasi-convex group (see (2.4)). Komura [55] showed
that the limit of an uncountable direct system {pij ¢ Ei > Ej} of

locally convex spaces in which all mappings p are topological em-

i
beddings need not be locally convex, and even 52 it is, it need not
induce original topologies on the spaces Ei. If, in (1.18), all
groups Gn are locally convex spaces, G 1is a locally convex space,
too ([80], Ch. II, (6.4)). If we assume only that all Gné are Haus-
dorff locally quasi-convex groups, then probably G need not be 1lo-
cally quasi-convex. See, however, (7.9). Vilenkin [99] considered an-
other topology on the limit of a direct system. Under his definition,

the limit of any direct system of abelian topological groups is a lo-
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cally quasi-convex group.
Let G,H be abelian topological groups and let ¢ : G>H be a
continuous homomorphism. Then the formula

<WPx),g> = <x,6(g)> (x €H; ge€gG)
defines a homomorphism vy : H > G . We call it the dual homomorphism
and denote by ¢‘. It is clear that ¢A : H; > G; is continuous when
T 1is the topology of pointwise (resp. compact, precompact) con-
vergence. If {pij z Gi - Gj; i,j € I; i 2 j} 1is an inverse system

of abelian topological groups, then {p;j : Gj 2% Gi} is a direct sys-

tem, and vice versa.
Let {Gi}ieI
by a set I. Suppose that, for each i € I, a closed subgroup Hi of

be a family of abelian topological groups indexed

Gi has been chosen. Let G be the subgroup of the product IT Gi
ier

consisting of all sequences (gi)iEI such that g; € Hi for all but

finitely many indices 1i. We topologize G by identifying it with the

limit of the inverse system

m : X G, x = (G,/H;) » = G, x = (G./H.)
KB " jeg ' fgg ¥ T fer - 4¢rn T 1
where K,L are finite subsets of I with K o L, and TRL is the

canonical projection. Endowed with this topology, G will be called
the reduced product of groups Gi relative to subgroups Hi and de-

noted by = (Gi 2 Hi). It is clear that the topology of G induces
ier
original topologies on the subgroups Gi' Notice that if Hi = Gi for
almost all i, then G = II G,; if Hi = {0} for almost all i, then
iel
G = = Gi' More precisely, if H 1is the subgroup of G consisting
iel

of all (gi)iEI
usual product topology and G/H 1is topologically isomorphic to the

such that g. € H., for every i, then H has the
i i

direct sum > (Gi/Hi). Since inverse limits and direct sums of 1lo-
ieT
cally quasi-convex groups are locally quasi-convex, G is locally

quasi-convex provided that so are all groups Gi and Gi/Hi.

(1.19) PROPOSITION. For each 1 € I, let wi : G~ Gi be the ca-
nonical projection. A subset X of G is precompact if and only if
wi(X) is precompact in Gi for all i, and wi(X) c Hi for almost

all 1. .



