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PREFACE

The University of Houston hosted a conference on Point Set Topology,
March 22 - 24, 1971. Meetings were held at the Shamrock Hilton Hotel. The
program consisted of twenty-six speakers and was attended by over one hundred

participants.

These Proceedings include papers which were presented at that conference.
Results announced at the conference, but not included herein, are expected to

appear elsewhere.
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SOME NEW ASPECTS IN CURVE THEORY
by

A. Lelek

The set-theoretical approach to the structure of continua brings us to
some problems concerning curves. By a continuum we understand to mean any
compact connected metric space, and a curve means any one-dimensional
continuum. The following class of curves has been introduced in [3]. We
call a curve Suslinian provided each collection of pairwise disjoint sub-
curves of it is countable. Thus each rational curve is Suslinian, and each
Suslinian curve is hereditarily decomposable. We say that a curve X is
acyclic provided each continuous mapping of X into the circle is homo-
topic to a constant mapping. A hereditarily decomposable curve X is
acyclic if and only if X 1is hereditarily unicoherent. We call a space

hereditarily discontinuous provided each continuum contained in it is de-

generate. It is known [3] that an acyclic curve X is Suslinian if and
only if X admits a decomposition X =P U Q where P is hereditarily
discontinuous and Q is countable. Clearly, the existence of such a
decomposition is a sufficient condition for any curve X to be Suslinian.
The problem which follows has been raised much earlier than it has been

published in [4], and still remains unsettled.

Problem I. Does each Suslinian curve X admit a decomposition

X =P Q where P is hereditarily discontinuous and Q is countable?

Suppose X 1is a Suslinian curve which does not admit the decomposition



required in Problem I. Then we know [1] the following condition (c) is

satisfied.

(c) There exists a point p ¢ X and two infinite sequences of continua

C X and K <X such that
n = —_—

- .
P € Cn’ Cn+1 Cn’ diam Cn <

1
PEéK, K NEK =48, diam K_ < =,

and CnlW K £0 4 K X C, for all positive integers n and m (m # n).

As a consequence, we can say that similarly to the case when the curve
X 1is acyclic the answer to Problem I is "yes'" also in the case when X is

atriodic, i.e. when for each three subcurves Cl’ C2’ C3 of X such that

Co - C1 N C2 = C2 n C3 = C1 n C3 #0

is connected, Co coincides with at least one of the curves Cl’ Cz, C3.
This is because condition (c) does not hold for atriodic curves. However,

we have a stronger result in the latter case. We call a space hereditarily

disconnected provided each connected set contained in it is degenerate. Thus

each hereditarily disconnected space is hereditarily discontinuous, but
there exist hereditarily discontinuous spaces which are even connected and
non-degenerate. It is known [1] that each atriodic Suslinian curve X
admits a decomposition X = P U Q where P is hereditarily disconnected
and Q 1is countable. On the other hand, there exists [1] an acyclic Sus-
linian curve X such that X # PU Q where P is not connected and Q

is countable. There also exists [1] a chainable Suslinian curve X such



that X # P UQ where P is zero-dimensional and Q is countable, i.e.
the curve X 1is not rational. An example of a Suslinian dendroid which is
not rational has been constructed earlier in [3]. The reader is advised to

consult [4] for a discussion concerning decomposition properties of curves.

Problem II. Does each Suslinian curve X for which condition (c) does

not hold admit a decomposition X =P UQ where P is hereditarily dis-

connected and Q is countable?

The rim-type of a rational curve X is understood to mean the minimum
ordinal o such that X possesses an open basis consisting of sets with
countable boundaries whose o-th derivatives are empty. Some historical
remarks about this notion are to be found in [5]. For instance, there
exist examples of chainable rational curves of rim—-type w which contain no
arcs. It is known [5] that each acyclic rational curve of finite rim-type
contains an arc. Of course, the arc is the simplest example of a curve of
rim-type 1. For any integer n > 2, there exists [2] a chainable rational

curve Xn such that each subcurve of Xn has rim—-type 1 or n.

Problem III. Does each rational curve of finite rim—type contain an arc?
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CUTS AND WEAK CUTS IN METRIC CONTINUA
by
L. Mohler (Buffalo)

A closed subset C of a topological space X 1is said to cut X
between two of its points p and q if X-C doeé not contain a connected
subset containing both p and q . (note that C cuts X between some
pair of its points if and only if X-C is disconnected). C is said to
- weakly cut X between p and q if X-C does not contain a continuum
containing both p and q (note that C weakly cuts X between some pair
of its points if and only if X-C is not continuumwise connected). C is
said to be a cutting of X if it cuts X between some pair of its points

and is said to be a weak cutting of X if it weakly cuts X between some

palrof dts pointsi

Clearly every cutting of a space is a weak cutting, but in general, the
two notions are different. However, if X 1is a locally connected continuum
(a continuum is a compact connected metric space), then every weak cutting
of X 41is a cutting of X. This follows from 'the''fact that every open
connected subset of X is arcwise connected. Thus if a closed subset of

X fails to:cut X , 1t also fails. to weakly cut: X

3 5 : : 2
Nomenclature for these notions is not standardized. 1In particular the word
"cutting" is sometimes used to mean '"'weak cutting".



In [3]2 Knaster raised the question of whether or not the
equivalence of these two notions characterizes the locally connected
continua among all continua. That it, suppose that X is a continuum
and every weak cutting of X 1is also a cutting of X . Does it follow
that - X .48 16¢ally connected?3 In [6] the author showed that this is in

fact the case. Indeed the following (slightly more general) theorem holds:

Theorem 1 : If X is a generalized continuum,4 then X is locally con-

nected if and only if every weak cutting of X 1is a cutting of X .

The theorem is proved by contradiction. Assuming that X is not locally
connected (but that every weak cutting is a cutting) one produces a family

of candidates for weak cuttings of X which are not cuttings by removing

certain boundary points from the closures of components of neighborhoods of

a point of hon—-local connectedness. A theorem of Whyburn on non-separated }
families of cuttings ([8], p. 45, th. 2.2) is then applied to show that at

least one of these sets is a weak cutting but not a cutting.

An equivalent statement of theorem 1 can be obtained by looking at the

complements of non-cuttings of X :

2See also [21].

3The question was probably suggested by the following theorem which appeared
in Zarankiewicz' doctoral dissertation [10] : A continuum X 48 loecally
connected if and only if for every pair of points p and q in X and for
every closed subset C of X , C cuts X between p and g if and only
if C weakly cuts X between p and ¢

4A generalized continuum is a locally compact, connected separable metric space.
It has been pointed out to the author by J.H.V. Hunt that this definition is
redundant; since any locally compact, connected metric space is necessarily
separable. See [1].




1
Theorem 1 : If X 1is a generalized continuum, then X is locally
connected if and only if every connected open subset of X 1is

continuumwise connected.

Using this statement of the theorem, the author [7] has obtained a number
of characterizations of hereditarily locally connected continua (centinua

each of whose subcontinua is locally connected). For example :

Theorem 2 : A continuum X is hereditarily locally connected if and only

if every connected, locally compact subset of X 1is arcwise connected.

One might guess that if X is a hereditarily locally connected
continuum, then every connected subset of X is arcwise connected (Wilder
[9] has shown that every connected subset of X is locally connected).
However, this is not the case. In [4] Knaster and Kuratowski give an example
of a regular (and hence hereditarily locally connected) continuum which
contains a connected subset with no compact perfect éubsets (and hence with

no non-trivial subcontinua). The following problem thus suggests itself :

Problem: Characterize those continua in which every connected subset is

arcwise connected. Are all such continua regular?

Kuratowski ([5], p. 273, th. 10) has shown that every connected subset of
a continuum X is arcwise connected if and only if every connected subset

of X is continuumwise connected.

It is perhaps interesting to note that theorem 1 fails in the non-
metric setting. In [6] an example is given of a compact connected Hausdorff
space each of whose connected open subsets is arcwise connected, but which

fails to be locally connected.
University of Saskatchewan

State University of New York at Buffalo



