IEEEEEEEE B N
I 1T 1T TITIT I BT

SCIENTIFIC

Harley Flanders

PASCAL

SCIENTIFIC PASCAL

HARLEY FLANDERS

Florida Atlantic University

Reston Publishing Company, Inc.
A Prentice-Hall Company

Reston, Virginia

Library of Congress Cataloging in Publication Data

Flanders, Harley.
Scientific Pascal.

Includes bibliographical references and indexes.
1. Pascal (Computer program language) L Title.
QA76.73.P2F55 1984 001.64'24 83-16065
ISBN 0-8359-6932-0
ISBN 0-8359-6931-2 (pbk.)

© 1984 by

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved.

No part of this book

may be reproduced in any way,
or by any means,

without permission in writing
from the publisher.

Set by SCIENCE TYPOGRAPHERS in
Times Roman and

Helvetica Bold

10 9 8 7 6 5 43 21

Printed in the United States of America.

Scientific Pascal

PREFACE

The first purpose of this book is to teach the programming language Pascal to those
whose primary use of the computer is for scientific applications. The second purpose
is to teach the skill of tackling a computing problem, developing an algorithm for
solving it, and writing a program that does the job. The third purpose is to present a
number of important programs in useable form.

Why Pascal? First, because it has built-in clarity. A well-written Pascal program
can be read easily because of the way the language handles subroutines, links
between subroutines, and repetitive processes. Second, the language is widely used.
Virtually every large and middle sized (mini) computer has Pascal software, and
more and more microcomputers include Pascal. What is more, Pascal is rapidly
becoming the first language taught in introductory computer science/systems courses
because the structured programming discipline of Pascal engenders better program-
ming technique in general than does, say, BASIC or FORTRAN. A third reason is
Pascal’s broad flexibility for data types. Finally, the recursive nature of Pascal is
especially attractive.

The algorithmic and recursive language ALGOL was developed in the 1950s and
60s by a group of computer scientists. Pascal, an offshoot of ALGOL, was invented
by Niklaus Wirth in the late 60s. Compared to ALGOL, Pascal is simpler and
clearer. It has much better data handling capability and built-in 1/0 procedures
(input /output), which ALGOL lacked.

I believe one learns most efficiently by studying examples and by working
exercises. Students learn calculus by working through hundreds of solved examples
and by solving thousands of exercises. I think the same principle applies to learning

ix

x PREFACE

a programming language. A student should see solved examples on each topic and
work on hundreds of exercises. The examples and exercises, culled from many
sources, are probably the bulk of this otherwise modest text. Both the examples and
the exercises are graded in an overall way. At first they are brief, single task
fragments of programs. It is only in Chapters 3 and 4 that we get to some substantial
programming problems. The polynomial program near the end of Chapter 4 is our
first large multi-purpose program. Needless to say, organizing a large program
presents a rather different type of problem than implementing a single short
algorithm. Starred exercises are the most difficult ones. Pascal is particularly suited
to the decomposition of a large task into manageable components.

The solutions section contains a solution for each exercise in the text. Each
example of a program or procedure, whether in the text or the solution section, has
been tested on a computer. To guarantee accuracy, we have reproduced computer-
generated printout of all our programs directly from disk files (after running
successfully) without the intervention of typists, copyeditors, or typesetters. Yet,
there may still be some errors lurking for the following reasons, and the author will
be grateful for having errors brought to his attention, large or small. First of all,
many of the programs went through several revisions in the course of testing, and in
some cases an earlier version (or even the wrong program) may have slipped in.
Second, the Apple* versions of Pascal that I have used do not implement function
and procedure parameters or the standard procedure Dispose. Therefore, the few
programs using these features are not fully tested (although I am pretty sure they are
correct). Finally, a few (harmless) deviations from my format may have slipped
through, and in the longer programs, there may occasionally be a variable declared
that is not actually used (also harmless). I hope there are no errors more serious than
these latter two.

The publisher expects to make many of the programs in the book available on
diskettes, first for the Apple® computer, later for the IBM PC computer and possibly
also for other operating systems.

Let us look briefly at the contents. Chapters 1 and 2 cover most of Pascal. I have
tried to get into the subject briskly, so the reader can solve interesting problems in
Pascal almost from the start. The last sections of Chapter 1 emphasize how program
flow is controlled. By the last sections of Chapter 2, some challenging algorithms are
presented in the exercises. The examples and exercises on sets are a feature. Chapter
3 contains a detailed discussion of recursion. One unique feature is a section on
translating recursive programs to (faster) iterative ones. Other features are the
in-depth sections on program flow and the section on format and errors.

Chapter 4 covers records, pointers, and files, the more sophisticated parts of
Pascal, and completes our study of the language. Features are the programs on
matrices and on polynomials that exploit pointer types, and the exercises on files.

The final two chapters contain a wealth of applications; hopefully readers will
find some of these programs really useful. In most cases, I have included careful

*Apple is a registered trademark of Apple Computer, Inc.

Preface xi

analyses and background material on the programs. To my knowledge, much of this
material has never before appeared in Pascal.

Chapter 5 contains analytic applications: summation of series, transcendental
functions, zeros of functions, derivatives, integrals, differential equations, and the
fast Fourier transform. Chapter 6 contains algebraic applications: linear systems,
scaling and pivoting, integer matrices, characteristic roots, high-precision integer
arithmetic, permutations, and posets. I have tried to present state-of-the-art algo-
rithms where possible. Features are adaptive integration and differential equations
programs, a program for invariant factors, and the QR algorithm for characteristic
roots of symmetric matrices.

I have tried to find challenging problems for the examples and exercises. Finding
an algorithm that will solve a given problem in a reasonable time with available
computer memory can be a difficult task. This is part of the solution. The other part
is translating the algorithm into a clear Pascal (or other language) program. I hope
this text proves useful for developing these problem-solving skills.

As you learn programming in Pascal (or any language) you frequently look up
partly forgotten words and symbols. The material inside the covers should be
helpful. In front is the vocabulary of Pascal, (reserved) words and symbols. In the
back are the standard names (identifiers) the language provides and flowcharts for
the control statements of Pascal. The appendices contain the syntax of Pascal, both
in verbal and “railroad diagram” form. (But don’t turn to the appendices every time
you are in doubt about how a particular construction behaves. Instead, experiment;
run many short test programs. Doing so is challenging, fun, and highly instructive.)
The appendices also contain the ASCII control code and the standard compiler error
messages.

I have set several standards for myself in this book. One is to include only
programs that have actually been tested on a computer. A second is to print all
programs in an uncluttered, clear format. The formatting program is included in
Appendix C. It is of some interest in itself as it is the only large program in the book
that is non-scientific and full of the kind of fussy detail that requires careful
organization. I had hoped to prove the existence of a Pascal text without the
seemingly mandatory program on sorting. However, at the last minute I relented and
included the heapsort program, in Appendix F, used to alphabetize the index of this
book. Finally, I have tried to use every term of the Pascal language in at least one
program.

Most of the sources cited in the text refer to the References section at the end.
However CACM refers to the collection, Collected Algorithms of the ACM.

It is my great pleasure to express my gratitude to the many people and
institutions that have made this book possible. Florida Atlantic University supplied
my computing needs and a great deal of support over the years. Rita Pelava typed
some of the early programs into an Apple®. Dawn Schwartz typed the whoie
manuscript, using the Applewriter I1I® word processor, and most of the programs,
using the Apple Pascal® text editor. John Sulzycki did the developmental editing,
ably assisted by reviewers: Bill Ellis, David V. Moffat, Richard W. Nau, John Goda,

xii PREFACE

and Keith Doty, who contributed numerous valuable suggestions. The production
staff at Reston were most cooperative, and 1 wish to express my particular thanks to
the production editor, Diane Anderson. The compositor, Science Typographers Inc.,
did a fine job of composition, and the technical artist, Donald Price, produced
excellent illustrations; I am grateful to both. Finally, the pager did a remarkable job
of page make-up, better than I ever thought possible.

Harley Flanders
Florida Atlantic University
July, 1983

Pascal Punctuation Marks and Symbols

Separators

statement - statement
5 end of declaration
end of procedure or function body
e list item - list item
variable — type
function - type identifier
case label list — statement
label - statement

expression —field length

field length — no. of decimal places
. first element - last element

identifier — constant

) L identifier — type
[record - component

end of program - next input

Operators

= assignment

+
} arithmetical unary
*
/ . _ .
arithmetical binary
+
not

and ; boolean

or
Not used

")

& @ % ! \ T

Brackets

usual arithmetic

) parameter brackets
record variant brackets
array bounds brackets

-0l { set brackets

s character or string delimiters

L2 } comment brackets

(x %)

Other
decimal point

E e power of 10
pointer type declarer

T ° pointee
file element

<> (#)

< comparison
<= (L)

>

> (>

- (difference \)
* (intersection N) } operations on sets

+ (union U)

Constants

True
False
Maxint

Types

Integer
Real
Boolean
Char
Text

String { UCSD Pascal }

Variables

Input
Output

Procedures

Read
Write
Rewrite
Get
Page

New
Pack

Pascal Predefined ldentifiers

ReadIn
Writeln
Reset
Put

Dispose
Unpack

Function ~ Domain
Abs Integer / Real
Sar Integer / Real
Sqgrt Real
Exp Real
Ln Real
Sin Real
Cos Real
Arctan Real
Function Domain

Round Real

Trunc Real

Pred any scalar type
Succ any scalar type
Ord any scalar type
Odd Integer

Chr Integer

Eof any file type
Eoln Text

Range

same
same
Real
Real
Real
Real
Real
Real

Range

Integer
Integer
same
same
Integer
Boolean
Char
Boolean
Boolean

PASCAL FLOW CONTROL

if £ then S: Tif Ethen Selse T: U while Fdo S: T

case E of
list—1:S,.
list =2 : S,:

list—n: S,
end: T

Evaluate E|. E,

for] = F toE.,doS; T

repeat S;:S.: - S,untitk: T

Declaration Specifiers

program
label

const

type

var
procedure l

. forward
function l

Flow Control

if... then...

if... then.. . else...
while... do...

with... do...
repeat... until. ..
for...to...do...
for... downto... do...
case...of... end

goto...

Set Membership

Pascal Reserved Words

Statement Brackets

begin... end

Type Builders

sacked | AL 1ot
{ record... end
file of...
set of...

Integer Operators
div

mod

Boolean Operators
not

and

or

The Null Pointer

CONTENTS

Preface ix
An Overview of Pascal 1
1.1 Introduction 1

1.2
1.3
1.4
1.5
1.6
1.7

Procedures and Programs 9
Integers 16

Reals 19

Booleans 25

Statements 30

Loops 37

Types and Procedures 50

21
22
23
24
2.5
2.6

Scalar Types 50

Array Types 54

Input /Output 67

Procedures and Functions 75

More on Procedures and Functions 85
Set Types 96

vi

CONTENTS

Program Flow 102

31
32
33
3.4
35

Recursion 102

Recursive to Iterative 113
Backtracking 120
Systematic Flow 126
Format and Errors 137

Structured Types 148

41
42
43
44
4.5
4.6
4.7

Record Types 148
Variant Parts 155

Pointer Types 160
Manipulating Pointers 166
Examples 175

File Types 189

Text Files 197

Numerical Applications 202

51
52
5.3
5.4
55
5.6
5.7
5.8
59

Some Calculations 202

Elementary Transcendental Functions 213
Derivatives 217

Zeros of Functions 220

Integrals 238

Differential Equations 262

Predictor-Corrector Methods 283

The Fast Fourier Transform 288

Bernoulli Numbers and Bernoulli Polynomials 295

Algebraic Applications 304

6.1
6.2
6.3
6.4
6.5

Linear Systems 304

Integer Matrices 310

Characteristic Roots and Vectors 323
Multiple Precision Arithmetic 342
Miscellaneous Programs 358

Contents vii

Appendices 378

Syntax 378

Railroad Diagrams 385

A Formatting Program 392

ASCII Character Code 400

Compiler Error Number Summary 402
A Sorting Program 407

oo OQw >

Solutions 411
References 552
Index of Programs 555

General Index 559

CHAPTER 1

AN OVERVIEW
OF PASCAL

1.1 INTRODUCTION

Pascal is a block-structured programming language. In contrast, pfogramming
languages like BASIC, FORTRAN, and Assembler are line-structured. In Pascal, the
line does not exist as a unit, so far as the language is concerned. Of course, we write
our programs in lines for clarity, but the lines may all be run together; the program
will still run in exactly the same way. Each “block” does a task, and the program
structure governs the flow from task to task. By the end of Chapter 2, this will be
quite clear; for the moment, the flowchart in Figure 1.1 indicates how we might
think of a program that links several tasks together.

(Start)
| Task | | Task 3

—— | —

Subtask 3A

Task 2

FIGURE 1.1

Sample flowchart 4 a —

2 1 AN OVERVIEW OF PASCAL

Sample Pascal Program Fragments

The following examples are samples of what pieces of Pascal programs look like.
Don’t worry if they are not completely clear now; everything will be explained in
time. Also, some are not complete programs, so you cannot do computer tests
without fleshing them out somewhat. Finally, each fragment is probably not the
neatest or most elegant solution of the proposed problem.

EXAMPLE 1.1 The function P(N)= N°— 5N will be evaluated for many in-
tegers N. Set up its definition in Pascal.

Solution

function P(N: Integer): Integer;
begin P := (Sqr(Sqr(N)) - 5)*N end;

The first line declares the function P of an integer variable N and says that the
function is integer valued. The second line assigns to P the result of the computa-
tion ((N?)?2—5)* N. (In computing, * is the multiplication symbol.)

EXAMPLE 1.2 Find the least positive integer N such that N> — 5N > 30,000.
Solution
program FINDN;
var N: Integer;
function P(N: Integer): Integer;

var J: Integer;

begin

J := N*N; J := J*J - 5;
P := J*N

end; { end P}

begin { begin FINDN }

N := 0;

repeat N := N + 1 wuntil P(N) > 30000;
Write('N = ', N)

end.

The program begins by declaring an integer variable N and an integer-valued
function P(N), where N is an integer variable. The function has its own (local)
integer variable, which is used as an aid in assigning its value. The steps are

