conference board of the mathematical sciences
regional conference series in mathematics

number 5 5

William Arveson

TEN LECTURES ON
OPERATOR ALGEBRAS

W, % ; '
- m  supported by the national science foundation

™ pubished by the american mathematical society



Conference Board of the Mathematical Sciences
REGIONAL CONFERENCE SERIES IN MATHEMATICS

supported by the
National Science Foundation

Number 55

TEN LECTURES ON
OPERATOR ALGEBRAS
by
William Arveson

Published for the
Conference Board of the Mathematical Sciences
by the
American Mathematical Society
Providence, Rhode Island



Expository Lectures
from the CBMS Regional Conference
held at Texas Tech University
August 1-5, 1983

Research supported in part by National Science Foundation Grant MCS83-02061.

1980 Mathematics Subject Classifications. Primary 47D25; Secondary 47CO0S.

Library of Congress Cataloging in Publication Data

Arveson, William.
Ten lectures on operator algebras.

(Regional conference series in mathematics; no. 55)

Bibliography: p. .

1. Operator algebras—Addresses, essays, lectures. I. Conference Board of the
Mathematical Sciences. II. Title. III. Title: 10 lectures on operator algebras. IV. Series.
QA1.R33 no. 55 [QA326] 510s [512'55] 849222
ISBN 0-8218-0705-6

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them,
are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Per-
mission is granted to quote brief passages from this publication in reviews provided the customary acknowl-
edgement of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (in-
cluding abstracts) is permitted only under license from the American Mathematical Society. Requests for
such permission should be addressed to the Executive Director, American Mathematical Society, P. O.
Box 6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright
Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to Copyright Clearance
Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code
0160-7642/84 to refer to this publication. This consent does not extend to other kinds of copying, such as
copying for general distribution, for advertising or promotion purposes, for creating new collective works or
for resale.

Copyright © 1984 by the American Mathematical Society
Printed in the United States of America
All rights reserved except those granted to the United States Government
The paper used in this book is acid-free and falls within the guidelines

established to ensure permanence and durability.



TEN LECTURES ON
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Introduction

This book contains somewhat expanded versions of ten lectures delivered at
Texas Tech University during the summer of 1983. The operator algebras of the
title are nonselfadjoint algebras of operators on Hilbert space.

This subject is new, and has shown remarkable growth in the last twenty years.
Indeed, when I was finishing my graduate studies in 1964 | knew of only three
papers that addressed themselves seriously to nonselfadjoint operator algebras
([42, 61], and a paper of John Schue, The structure of hyperreducible triangular
algebras, Proc. Amer. Math. Soc. 15 (1964), 766-772). A few of us believed in the
sixties that this was a promising way to approach the theory of single operators,
but we certainly did not see how and were not even sure if that would be
accomplished. What actually happened was that the subject developed in several
directions, and was pursued entirely on its own merits. When the applications to
single operator theory did come, they came unexpectedly and in surprising ways
(see Lecture 10). These results are deep and, looking back on it now, I must say
that I cannot conceive of any way that the methodology of single operator theory
could have produced them.

The subject matter for these lectures has been selected using subjective criteria.
Some of it has historical interest, some of it seems timely or important (at least to
me), some of it seems to suggest new directions, and some of it is just fun to
communicate. I have had to omit several of my favorite topics on which there has
been significant progress, including noncommutative Silov boundaries, abstract
dilation theory, and algebras defined by group actions [7, 8, 73, 74, 50, 12, 49].

Some of the material is expository and is presented largely without proofs
(Lectures 1, 2, 5, 6). Some is expository but with complete proofs or complete
ideas of proofs (Lectures 7, 8, 10). Lectures 7 and 8 expand on some notes
distributed to the participants in a seminar at Berkeley during the spring quarter
1983; Lecture 9 is based on a lecture delivered in Busteni, Romania, in September
1983. Lecture 4 contains new material relating to the Feynman-Kac formula. I
have taken some care to present complete proofs, and to develop the background
material from classical mechanics and quantum mechanics in Lecture 3.

Finally, the references are by no means complete. I have referenced only those
items | know about that relate to the subject matter of these lectures. The reader
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viii INTRODUCTION

will find a more complete bibliography in the survey of John Erdos [29], which
also contains a discussion of several topics not mentioned in these lectures.

I would like to thank the National Science Foundation for granting financial
support to this lecture series, the conference organizer, Gareth Ashton. for his
efforts to make the conference work. and the Mathematics Department of Texas
Tech University for the hospitality they extended to all the participants.

Note added December 5, 1983, concerning Lectures 4 and 5. Barry Simon has
pointed out that connections between the Feynman-Kac formula and dilation
theory have been observed previously in the mathematical physics literature. We
particularly want to call attention to the work of Abel Klein {75, 76, 77, 78] on
Osterwalder-Schrader positivity, and of Klein and Landau [79, 80] on the path
space approach to perturbation theory and KMS systems.
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Lecture 1. Origins in Single Operator Theory

Many of the concepts that are now a basic part of this subject (triangular
operator algebras, compact perturbations, quasitriangular operator algebras) have
identifiable origins in single operator theory. Others do not (e.g.. the contents of
Lectures 4-8). In this lecture I want to describe some ideas from single operator
theory that have led to significant generalizations in the theory of operator
algebras. I will also discuss some ways of thinking about these things that I have
found to be useful.

Consider first the case of an operator 7 on a finite-dimensional Hilbert space
. Every graduate student knows that there is an orthonormal basis

{e,,e,,...,e,} for H relative to which the matrix of T is upper triangular.
Equivalently, there exist (selfadjoint) projections 0 = Py < P, < --- <P, =1
such that

(i) (1-P)TP, =0,0 <k <n,
(L1) (ii) the algebra generated by { P, } is maximal abelian.

The key step in the proof consists of showing that every operator on a nonzero
finite-dimensional Hilbert space has an eigenvector—a one-dimensional invariant
subspace. The triangular form (1.1) is obtained by repeatedly applying that result
to the projections of 7 onto the various quotients

AP, k=01,...n-1,

as the P,’s are constructed one by one. Nothing like this is known for operators
on infinite-dimensional Hilbert spaces; indeed it is not even known if general
operators have even a single nontrivial invariant subspace.

In order to discuss this further, let us call an operator 7 (or a set of operators
{T,: a € I}) transitive if the only closed subspaces .# of the underlying Hilbert
space ¢ satisfying

THC M (resp. T, M C M forall a)

1



2 ORIGINS IN SINGLE OPERATOR THEORY

are A = {0} or M4 = 5; the term intransitive simply means not transitive. The
following result is an unpublished theorem attributed to von Neumann. A
generalization to Banach spaces was found by Aronszajn and Smith [4].

THEOREM 1.2. Every compact operator on infinite-dimensional Hilbert space is
intransitive.

Responding to a conjecture of Kennan Smith which was popularized by Paul
Halmos, A. Bernstein and A. Robinson [17] found a significant generalization of
Theorem 1.2 in which the hypothesis that 7 is compact is replaced by the
hypothesis that p(7') is compact for some nontrivial polynomial p. Their proof
had metamathematical aspects which made many functional analysts uncomfort-
able, and soon Halmos published a somewhat improved “translation” of their
proof into more conventional operator theoretic terms [36]. The latter was
generalized and simplified in [16], and in short order a flurry of papers had
inundated the subject. Years later, Lomonosov found a dramatic generalization: if
an operator algebra s/ commutes with a nonzero compact operator, then & is
intransitive. Lomonosov’s method was entirely new, and seemingly, his result had
rendered obsolete much of the preceding work on invariant subspaces.

While that statement is true in some limited sense, it is certainly misleading.
And there is a lesson here. What has survived from the pre-Lomonosov methodol-
ogy 1s a concept (quasitriangularity). This concept has suggested new problems,
and new formulations of old problems, which have led to remarkable progress in
single operator theory and in operator algebras. '

Let us begin by sketching the essential idea behind the proof in [16]. One is
given a quasinilpotent operator 7 such that p(T') # 0 for every polynomial p # 0,
and a cyclic vector ¢ for 7. Let P, be the n-dimensional projection onto
[§, T¢, T¢,...,T" '¢). P, is not invariant under 7, but a routine computation
shows that the sequence { P,: n > 1} is asymptotically invariant in the following
sense:

(12) lim [|(1 = P,)TP,| =0,
n—>00

[16, p. 61]. If the norm-closed algebra generated by 1 and 7 contains a nonzero
compact operator, then one can construct a nontrivial invariant subspace for 7.
Briefly, one finds a judiciously chosen sequence Q, of invariant projections for
the sequence of finite-dimensional operators

Tn = PnT|ran P~

One then extracts a subsequence Q,.Q,.... which converges weakly to a
positive selfadjoint operator Q. If one makes the “right” choice of {Q, }, then it
can be shown that .# = {§: Q& = £} is a nontrivial 7-invariant subspace.

Halmos made the condition (1.2) into a definition, thereby initiating the theory
of quasitriangular operators [37]. Let us recall the basic definitions. An operator
T € L (X) is called triangular if there is an increasing sequence P, < P, < - -+
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of finite-dimensional projections such that P, — 1 strongly, and
(1-pP,)TP, =0, n=172,....

The dimensions of the projections P, are allowed to increase arbitrarily fast.
However, since the restriction of 7 to the range of each P, is a finite-dimensional
operator, one may use conventional linear algebra to find a new sequence { P, } of
invariant projections, which refines the original sequence { P, } in the sense that
{P,} < { P/}, which satisfies P, < P,,, and is such that P, is n-dimensional for
every n.

CONCLUSION. An operator T is triangular iff there is an orthonormal basis
(e, e,,...} with respect to which the matrix of T is upper triangular:

* * *
0 * *
0

Let us write 7 for the class of all triangular operators (I am going to ignore the
obvious set-theoretic difficulties associated with such a definition, leaving it for
the reader to reformulate the definition of 7 so as to obtain a bona fide set).

An operator T € # () is called quasitriangular if there is an increasing
sequence { P,} of finite-dimensional projections in & () such that P, — 1
strongly and

I(x = P)TP,| = 0.

as n — o0. Let us write 27 for the class of all quasitriangular operators.
Now if {P,} is any sequence of projections which tends strongly to the
identity, then one can show easily that

lim [[(1 - P,)KP=0
n—aoc
for every compact operator K. It follows that every compact perturbation of a

triangular operator is quasitriangular. Significantly, these two classes of operators
actually coincide [37].

THEOREM 1.3. 29 =9+ X .

SKETCH OF PROOF. Let A be a quasitriangular operator and let { P,} be a
sequence of finite rank projections which increases to 1 and satisfies

n—noc
We may find a subsequence P,, P, .... of {P,} so that the numbers

@ — P, )AP, || tend to zero as fast as we like, and in particular there is a
subsequence Q, = P, , Q, = P, ,... such that

(15) S (1= 0,)40,] < .

k=1



4 ORIGINS IN SINGLE OPERATOR THEORY

(1.5) implies that the operator

K=2 (1-0)4(0, -0, )
k=1

is an absolutely convergent series of finite rank operators, and is therefore

compact. Moreover, the operator 7T = 4 — K is triangular because K has been

constructed so that

(1-Q)KQ, =(1-0,)40,.
and hence (1 — Q,)TQ, =0, k=1,2,.... Therefore 4 = T + K belongs to
J+X. O

The above argument shows that if { P, } is a sequence of finite rank projections
which increases to 1 and A4 is an operator such that ||(1 — P,)4P,|| — 0, then A4
has a decomposition
(1.6) A=T+K
as a compact perturbation of an operator 7 which leaves an infinite subsequence
{P,, } of { P, } invariant. A natural question here is whether or not 7 and K can be
chosen so that T leaves the entire sequence { P,} invariant. The answer turns out
to be yes but the proof is quite different from the proof of Theorem 1.3, and
involves operator algebraic techniques which will be discussed in Lecture 2
(Theorem 2.10).

We will return to quasitriangular operators presently. I want to digress for a
time in order to describe some ways of thinking about compact perturbations that
have been useful to me. Consider first the space /[ of all bounded complex-val-
ued sequences a = {a,: n=1,2,...}. [* is a commutative C*-algebra with unit
relative to the usual norm and operations: for instance, the product of two
sequences a and b is the sequence {a,b,: n = 1,2,...}.

What does it mean for two sequences to have the “same properties”? We mean
by this that there should be an automorphism of the given C*-algebra structure of
[ which carries one sequence to the other. It is not hard to determine the group
of all automorphisms of /*. The most general automorphism « is given by a
permutation 7 of the set N of positive integers as follows:

(1.7) a(a) = {a,,, n€N}, a€cl”.

The reason is that an automorphism a of /* must permute the minimal projec-
tions of /*, the latter are identified as the characteristic functions of singleton
subsets of N, and thus we obtain a permutation 7 of N satisfying (1.7).

What does it mean for two sequences a and b to have the “same asymptotic
properties”? It is reasonable to require this to mean that there should be an
automorphism a of /® such that a(a) — b vanishes at infinity. Thus one may
introduce an equivalence relation as follows:

DEFINITION 1.8. a ~ b iff there is a permutation 7 of N such that

lim |a,,, — b,|=0.

n—oo

m(n)
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Consider the subspace ¢, of /* consisting of all sequences a satisfying
lim,_,  a,=0.cyis a closed selfadjoint ideal in /*, and so we may form the
quotient C*-algebra /* /¢, and the canonical projection

a€l® = acl*/.

Notice that the equivalence class of a given sequence a depends only on the
projection of a to I* /c,.

It is not very hard to show that the norm of & is given by the asymptotic
expression

(1.9) lall = tim [{a,,a,.,... }].
n—oc
Let us now consider invariants for the equivalence relation ~ . One such

invariant is the number ||d||, since @ ~ b implies ||@|| = ||b||. Another invariant is
the essential spectrum, defined for an element a € /* as the spectrum of a in
[*/c,. It 1s an interesting exercise to prove the following description of the
essential spectrum of a sequence as the set of all its cluster points:

PROPOSITION 1.10. For every a € [,

o0

sp(a) =) {a,:k=>n}.

n=1

The following theorem is due to von Neumann, and asserts that the essential
spectrum is a complete invariant for the equivalence relation ~ . :

THEOREM 1.11. a ~ b if and only if, sp(a) = sp(b).

A proof of the interesting implication can be found in [19, pp. 81-82].

We move now from commutative asymptotics to noncommutative asymptotics.
In place of /* we consider the space & of all infinite matrices A of complex
numbers 4 = (a,,), ., for which the norm

o

2 aém,

ij=1

A = sup

is finite, the supremum extended over all sequences &, n of complex numbers such
that £, = n, = 0 for all but a finite number of indices ; and which satisfy

2 2
YlIT<1, Xkl <1
i i

&£ is a C*-algebra relative to the usual matrix operations, and the usual
*-operation in which 4* means the conjugate transpose of 4. Of course, &£ is
isometrically *-isomorphic to the algebra Z(#) of all bounded operators on an
infinite-dimensional separable Hilbert space 5#, but for the moment, we wish to
view & as a noncommutative analogue of the C*-algebra of sequences /*.

Let X’be the norm-closure in & of all matrices A = (q,,) for which a,, = 0 for
all but a finite number of pairs i, j. Xis a closed two-sided ideal in £, occupying
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the role of the compact operators in £ (). Thus /% 1s a C*-algebra, and we
have a natural projection 4 € £ A € %/ . In analogy with (1.9), the quotient
norm in.%/X" is given by

(1.12) 4] = lim |4,]. 4e2.

where A4,, 4,.... is the sequence of truncated matrices

a a

n.n non+1

a a

n+1l.n n+l.n+1

n

Now every *-automorphism of % is implemented by a unitary matrix U in the
sense that 2(A) = UAU ' A4 € %. Thus the following definition makes precise
in this context the idea that two matrices 4 and B should have the same
asymptotic properties.

DEFINITION 1.13. A ~ B iff there is a unitary matrix U such that UAU ' — B €
X

What about invariants for the relation 4 ~ B? As before, we have the essential
norm defined by (1.12), and the essential spectrum of 4 € ¢, defined as the
spectrum of A relative to the C*-algebra .#/¢". This time, however, neither of
these is a complete invariant. Indeed, the situation here is vastly more com-
plicated than the corresponding situation for /.

A new invariant, which has no commutative counterpart, has to do with the
Fredholm index. In order to discuss this, let us discard the matrix interpretation
and consider . (resp. ") to be the algebra.#(¢) of all bounded (resp. compact)
operators on a Hilbert space »# of dimension N,. An operator 4 is said to be
semi-Fredholm if its range A ¢ 1s closed and one of the two subspaces

kerA and Coker A = ker A*
is finite dimensional. In this case the index of A is defined as the number
index A = dimker A — dimker A*.

The index of A is an ordinary integer or is + c0. It is a fact that the semi-Fred-
holm operators are stable under compact perturbations, and that the index of
such an operator is similarly stable.
(1.14) index A = index(A4 + K ),
for every semi-Fredholm operator 4 and every compact operator K.

The formula (1.14) implies that the index is a new invariant for the equivalence
relation 4 ~ B. Indeed, if 4 ~ B and A — Al is semi-Fredholm for some complex
scalar A, then B — Al is also semi-Fredholm and moreover

(1.15) index(A4 — Al) = index(B — Al).
With the help of (1.15), we can now give an example of two inequivalent

operators 4, B which have the same essential spectrum. Let 4 be the simple
unilateral shift and let B = A*. Then both 4 and B have the same essential
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spectrum (namely the unit circle), whereas both 4 and B are Fredholm operators
whose Fredholm indices are, respectively, —1, and +1. It follows that 4 and B
cannot be equivalent.

Let us return now to quasitriangular operators. In 1968, Halmos showed [37]
that there exist operators which are not quasitriangular (the shift is one such).
Douglas and Pearcy later clarified the situation somewhat by proving [28].

THEOREM 1.16. If A is quasitriangular, then index(A — A1) > 0 for every A € C
for which A — A1 is semi-Fredholm.

This implies Halmos’ earlier result, because the shift is a Fredholm operator
whose index is —1.

In a series of papers which contain a deep analysis of the spectral properties of
operators, Apostol, Foias, and Voiculescu provided a remarkable converse to
Theorem 1.16 [3, Corollary 5.5].

THEOREM 1.17. If A is an operator such that index(A — A1) > 0 for every A € C
for which A — A1 is semi-Fredholm, then A is quasitriangular.

Thus, the only obstruction to membership in the class 27 is an index
obstruction. Theorem 1.17 also has implications about invariant subspaces; it
implies that every nonquasitriangular operator is intransitive. For by Theorem
1.17, such an operator 4 would have a scalar translate A — Al of negative index,
hence A* — A1 would have an eigenvector, hence 4 would have an invariant
subspace of codimension one. So if there exists a transitive operator on a Hilbert
space (and I personally believe that such operators do exist), then it must be
quasitriangular.






Lecture 2. Triangular and Quasitriangular Operator Algebras

The first nonselfadjoint operator algebras to be considered seriously were the
triangular algebras of Kadison and Singer [42]. These are the complex subalgebras
& of () such that

& N Z* is a maximal abelian subalgebra of L ().

There are two extreme types: the transitive ones (i.e. lat &= {0,1}) and the
reflexive ones (an algebra #/is reflexive iff o/ = alglat 27). Actually, Kadison and
Singer used the terminology irreducible and hyperreducible, but I shall not.

A maximal triangular algebra is a maximal element in the partially ordered set
of all triangular subalgebras of £ (J¢). A straightforward exercise with Zorn’s
lemma shows that every triangular algebra is included in a maximal triangular

algebra.
It is easy to describe the maximal triangular algebras on J#when J#is finite
dimensional. For that, choose an orthonormal basis e,,.. ., e, for #and let &/ be

the algebra of all operators on # whose matrix relative to {e,} is upper
triangular. Then o/ is maximal triangular. Moreover, every maximal triangular
algebra on J#1s unitarily equivalent to this particular one [42]. More generally, any
subalgebra of & which contains all diagonal matrices is a triangular algebra; and
the preceding discussion implies that every triangular subalgebra of £ () is
unitarily equivalent to such a subalgebra of /. In particular, there exist no
transitive triangular algebras on a finite-dimensional Hilbert space.

In infinite dimensions, the situation is quite different, and some examples will
be described presently. I will not have very much to say about transitive
triangular algebras in these lectures, but I do want to state some problems about
them and review briefly some of the things we have learned.

The first problem asks if there exist any nontrivial transitive algebras at all
(triangular or not) which are closed in the weak operator topology. Here, the term
nontrivial means the obvious thing: &/ # £ (). This is, of course, an algebraic
and easier variant of the invariant subspace problem, and it is still unsolved. It
has been known for some time that if a weakly closed transitive algebra.o/ C £ (%)
contains a maximal abelian von Neumann algebra, then &= .2(s¢) [5]. In
particular, a transitive triangular algebra is always weakly dense in £(¢).

9



10 TRIANGULAR AND QUASITRIANGULAR OPERATOR ALGEBRAS

Radjavi, Rosenthal, Nordgren. and others have found interesting generalizations
of these results [59]. It 1s significant that transitive algebras exist which are not
dense in & (0#") relative to the o-weak topology; indeed, Loebl and Muhly [49]
have given an example of a proper o-weakly closed subalgebra of (") which is
weakly dense in & (17).

Now one of the reasons Kadison and Singer introduced triangular algebras was
their hope that the maximal ones (even the transitive maximal ones) might play a
role somewhat analogous to that of the upper triangular n X n matrices. For
instance, Kadison has asked if every operator is a member of some triangular
operator algebra, transitive or not. If the answer is yes, then one would have
achieved something like a triangular form for the operator, even though one could
draw no conclusions about the existence of invariant subspaces. This problem is
still open, and still hard to approach.

The first examples of transitive triangular algebras appeared in [42], and can be
described as follows. Let # be a maximal abelian von Neumann algebra in
L () and let U be a unitary operator such that

(1) UAMU* = M, and
(2.1) (i) (ergodicity ) if E € M is a projection such that UEU* < E,
then E = 0 or 1.

For example, one may start with an ergodic measure preserving transformation ¢
of a finite measure space (X, u), take #'= L*(X.p). # = the multiplication
algebra of (X, p), and Uf(x) = f(¢x), for f € L*(x.n). The conditions (2.1)
imply that the linear space .« (.#, U ) consisting of all “polynomials”,

Dy+DU+ -+ DU",

i =0,1,.., D, € . is a transitive triangular algebra. However, these algebras
(M, U) are not closed in any reasonable topology, and that is a feature most
analysts find disagreeable. The preceding discussion implies that the weak opera-
tor closure of &/ (. U ) is the trivial algebra # (). and later work which will be
described in Lectures 5 and 6 implies that even the o-weak closure of &/ (A, U) is
L(H).

Fortunately, the norm closure of &7 (.# .U ) is nontrivial, and in fact is itself a
triangular algebra (see [6, Lemma 1.6]). These norm-closed triangular algebras
(M, U) "l completely determine the action of Z on # (vian € Z — ad,.) in
that two algebras are isomorphic if and only if, the corresponding actions are
conjugate. A version of this appears in [6] (with unitary equivalence replacing
algebraic isomorphism), and the general result is in [15].

Recently, more information about transitive triangular algebras has been
obtained by Baruch Solel [69]. Nevertheless, these algebras are still not very well
understood. In particular, no one has a clear idea of how well the above examples
represent general transitive triangular algebras. As a test question, we propose the
following: Is the norm closure of a transitive triangular algebra also triangular?



