William L. Raiser Introduction to

Structured
@ Pascal

Programming

//—\

@

Introduction
to Structured
Pascal
Programming

William L. Raiser
Graceland College

Gorsuch Scarisbrick, Publishers
Scottsdale, Arizona

Gorsuch Scarisbrick, Publishers
8233 Via Paseo Del Norte, Suite E-400
Scottsdale, AZ 85258

10987654321

ISBN 0-89787-417-X

Copyright © 1986 by Gorsuch Scarisbrick, Publishers
All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic,
mechanical, photocopy, recording or otherwise, without

the prior written permission of the Publisher.

Printed in the United States of America.

Preface

This text is written for beginning Pascal students. No prior knowledge of
Pascal, or any other programming language, is expected, and all of the fun-
damental features of the Pascal language are discussed. The text focuses on
structured programming, which includes top-down design, modularization,
stepwise refinement, and the use of the appropriate control structures—se-
quential, conditional execution, and iteration. Numerous programs begin
with an elementary solution in one chapter and are developed and refined
over the course of several subsequent chapters. This integrates the material
in the text and allows the student to see successively more sophisticated pro-
gram solutions to the same initial problem.

Throughout the book, structure charts are used to help communicate the
ideas of program design and parameter passing. By graphically representing
the major sub-divisions of the problem solution, the charts clarify what
needs to be passed from one module, procedure, or function to another, and
illustrate how the modules relate to each other and to the main program.
Structure charts help the student understand and design the overall organiza-
tion of the program; thus, the use of these charts also lays the foundation for
their later use with more complex programming and system design courses.

As the use of structure charts indicates, a key part of the problem-solving
process is conceptualizing the problem in terms of its major components.
These components, or modules, become Pascal procedures or functions.
This book uses procedures for every program, which assures that students
will learn to think in terms of modularizing problems as they design a solu-
tion.

The focus of Introduction to Structured Pascal Programming is consis-
tently on the process of problem-solving, rather than on a mere presentation
of the technical features of Pascal. A computer is a problem-solving tool,
and the programming language unlocks the power of that tool. As such, a
language is a means and not an end in itself. The structured tools used in this
book to develop and write Pascal programs can be applied more generally in
many other contexts, enhancing the capabilities of our primary problem-
solving tool, the mind.

vii

viii Preface

The relatively informal style of this text puts the liberal arts student, using
the material as an introduction to computing, at ease; at the same time, the
focus on structured techniques provides the necessary foundation for the be-
ginning computer science student. Hopefully all students will learn some-
thing about the learning process itself, and about the ways in which skills
used in programming can be applied to other problem-solving situations in
life.

Contents

Introduction to Computers and Computing 1

1

Model Program 5
Computers, People, and Pascal 6
Programming and Debugging 8
The Program Format 12
Program Development Process 17
Summary 18

2
READLN and WRITELN 21

Output: WRITE and WRITELN 22
Formatting 24

Variables: Scope and Assignment 27

Input: READ and READLN 34

Arithmetic Operators and Real Numbers 40
Summary 43

3

Parameter Passing 45
Procedures that Communicate 45
Memory Allocation 53
Parameter Passing 53
Types of Parameters 58
Summary 59

4

Conditional Execution 61
IF-THEN 62
IF-THEN-ELSE 67

CASE 71
Summary 75

iv Contents

5
FOR-DO, REPEAT-UNTIL

FOR-DO 77
REPEAT-UNTIL 83

Amortization Case Study 89

Summary 95

6

WHILE-DO Iteration 97
WHILE-DO 98
Character Data and Codes
An lteration Problem 105
SUCC/PRED 107
Compound Interest Case Study
Writing an Averaging Program
Summary 111

7

One-Dimensional Arrays
Declaration and Input/Output
Decimal to Binary Conversion
Text Processing 129

Packed Array 133
Summary 139

8

Two-Dimensional Arrays
Scalar Products 141
Functions 145
Matrix Input/Output 150
Matrix Multiplication 154
Summary 159

%
Records 161

Record Input/Output 161
Array of Records 170
Summary 177

77

102

108
111

113

113
122

141

10

Sort/Search 179
Quick Sort 179
Binary Search 187
Summary 190

11

Pointers/Linked Lists 191
The Linked List 192
Deleting with a Linked List 203
The Alphabetic Add 208
Summary 210

12

Files 211

Summary 219

Appendix A
Alphanumeric Codes: ASCIlI and EBCDIC

Appendix B
Standard Identifiers and Reserved Words

Appendix C
Syntax Diagrams 227

Index 233

Contents

221

226

Introduction
to Computers
and Computing

The history of computers and computing is a fascinating story of people and
their ideas embodied in a machine that is in the process of transforming our
lives. Like most historical stories, we do not really know when or where it be-
gan. We will begin with Blaise Pascal since it is the language named after him

which you are about to study.
Pascal, a French mathematician/philosopher of the 17th Century, like

most scholars of that age, dabbled in many areas and made significant con-
tributions to several. His interest in mathematics and his desire to aid his fa-
ther in the many computations necessary for his tax work resulted in Pascal’s
production of a calculating machine. This was a simple device capable only
of addition or subtraction, but it was part of the new study that linked an in-
terest in mathematics with machines to perform the computations.

Two centuries later, in England, Charles Babbage became the father of
computing. Babbage was a mathematician and also a son of the industrial
age who, when confronted with the task of repetitively solving a moderately
complex algebraic function, naturally sought a mechanical way to solve the
problem. He persuaded the British government to finance his attempt to
build a difference engine. While he produced a workable design, he never
built the engine because his mind was on to bigger and better things, an ana-
lytical engine that could solve any mathematical function when properly pro-
grammed. This machine was programmable, had stored memory, and
performed the various mathematical operations. However, Babbage de-
signed the machine to work with massive amounts of numbers manipulated
in decimal form using gears and levers. While the machine worked in princi-
ple, it never worked in practice since the metal fabricating facilities of the
time were unable to produce parts with enough precision.

Also during the 19th Century in England, George Boole conceived an-
other piece in the puzzle. He developed an algebra based on the much simpler
binary, rather than decimal, system. Now any quantity could be represented
and logically manipulated in a system that required only two states—on, off;
high, low; zero, one. Since the digits in the decimal system can represent any

2 Introduction to Structured Pascal Programming

of ten quantities, zero through nine, and the digits in the binary system can
represent only two quantities, zero and one, this binary system greatly in-
creased the quantity of parts necessary to perform a set of computations but
greatly reduced the complexity of each part.

It remained for those in the 20th Century to translate the mechanical ideas
of Babbage and the binary logic of Boole into an electronic machine. John
Atanasoff was the first to do this, in the basement of one of the science build-
ings at lowa State University in Ames during World War I1. His accomplish-
ment was so little appreciated at the time that the university felt only three or
four such machines could be used in the entire United States. No patent was
applied for, and no scholarly advancement or scientific acclaim accrued to
Atanasoff. The computer era had begun, however.

During the 1950s several vacuum tube based computers were developed
for university research and military and business applications. The next
breakthrough came with the invention of the transistor, which replaced the
large, hot vacuum tubes, thereby increasing the computing capacity of the
machine while reducing its size and cost. This trend has continued to the
present with the development of integrated circuits in the 1960s and with very
large scale integration in the 1970s. We now have the mass-produced com-
puter-on-a-chip which sells for a few dollars and is smaller than your little
finger nail. The movement that began forty years ago is now a revolution.

From a machine that mechanically performed a few mathematical tax
computations or filled in the values of a logarithmic table, we have pro-
gressed to a general purpose machine which novelist Arthur Clarke suggests,
semi-seriously, may be the next step in the evolutionary development of life
on earth. Humans are the necessary intermediate step, and bring together the
integrated chips and assorted wires necessary to create the computers that are
in a sense this “next step on the evolutionary ladder.” Computers now de-
sign, program, and build other computers and can pass the stored data of
one generation to another in a matter of minutes, as opposed to the years re-
quired for comparable human transmission. From any perspective, the com-
puter is a very powerful tool.

The computer, as outlined in a classic paper by John Von Neumann in the
mid 1940s, consists of a central processing unit (CPU), memory, and input/
output (I/0) devices. The CPU consists of an operational control unit which
translates program instructions into appropriate machine activities; the
ALU, arithmetic logic unit, which performs the various mathematical and
logical operations; and local memory where various values are held momen-
tarily during program execution. Memory consists of RAM (random access
memory), which the computer can access to store, retrieve, or modify data,
and ROM (read only memory) containing various constants and commonly-
used subroutines which the computer can retrieve but cannot store or modify.
I/0 devices are the point of contact between the computer and the external

Introduction to Computers and Computing 3

world and come in a variety of forms. Input most typically comes through a
keyboard or some external storage device such as a disk or tape drive. Output
goes to a CRT, cathode ray tube or monitor screen, a printer, or some exter-
nal storage device again. As the use of the computer expands, the number
and type of I/0 devices expands greatly. For example, input may come from
some sensory device in the main engines of a rocket and output may go to the
mechanical arm of a robot. All of these pieces constitute computer hard-
ware.

The activities of the computer hardware are controlled by software. Soft-
ware consists of programs that are fetched and executed by the CPU. The
fact that a computer can run many different programs and that programs
can be changed from time to time gives the flexibility necessary to make com-
puters general-purpose devices. By modifying the software, computers per-
form a multiplicity of tasks without requiring a special piece of hardware for
each task.

Software can be broken into two broad categories. The operating system
is software that controls the resources of the computer, without which the
computer cannot function. The operating system of a computer can be com-
pared to the human brain, which controls the resources of the body and with-
out which the body cannot function. The application program is software
that uses the resources of the computer to perform useful work. We will de-
velop various application programs throughout this text.

Software has undergone several key transformations thusfar. The first
computers did not have operating systems. The human operators performed
these functions. The initial programs were written as a stream of zeros and
ones called machine language. Next came assembly language, which used
cryptic acronyms, such as LDA for /oad the accumulator, and was a distinct
improvement over simple zeros and ones. The goal has consistently been to
make programming more and more like a standard English conversation
with the computer. Operating systems developed, and languages moved to a
third generation of high-level languages such as FORTRAN, COBOL,-
BASIC, Pascal, and many others. We are coming closer to the original goal
of simplified human/computer interaction with fourth generation query lan-
guages used with modern database management systems, and much activity
in this country and Japan is focusing on fifth generation computers that will
make extensive use of artificial intelligence techniques.

Programming was initially an intuitive, make-do process. Programs were
very peculiar to the person who wrote them, and they were usually written by
one person. Such programs were difficult to modify to incorporate changes
and alterations, and were extremely difficult for a person other than the
original programmer to maintain. This made for very low programmer pro-
ductivity and very slow application development. In the early 1960s, Edsger
Dijkstra revolutionized the software industry by proposing principles of

4 Introduction to Structured Pascal Programming

structured programming, which we will study in this text. While many acade-
micians and data processing managers recognized the power of these soft-
ware development tools, programmers were slow to adopt them because of
old habits and because the existing languages did not encourage their use.
Newer languages such as Pascal, however, do incorporate language con-
structs that facilitate structured programming, which is one of the reasons
that Pascal is so widely used as a language of instruction in colleges and uni-
versities across the country. It is a very powerful language, and it encourages
the development of good programming habits that transfer to any subse-
quent language the programmer may use.

1
Model
Program

This text is designed to teach you Pascal programming. Programming involves
first conceptualizing a problem in such a way that it can be solved by computer
and then analyzing the problem—that is, dividing the problem into appropriate
pieces or modules. You thereby structure a solution to the original problem,
which you then translate into appropriate code for the computer. The emphasis
in this process is on problem solving and not on coding.

Structured programming involves top-down design, modularization, and
use of appropriate control structures. Top-down design means that the pro-
grammer/analyst starts with a broad overview of the problem the program is
to solve. For example, this approach would first look at a map or aerial pho-
tograph of your campus or community to gain an understanding of their
physical layout. This broad perspective enables us to see major subdivisions
of the problem, campus or community, that require focused attention, and
these become major modules in the problem solution. For example, pro-
grams often require us to get some initial data from computer storage or
from the user, to process that data, and to output, as a written report, the
new data generated. These become three modules in the program solution,
any one of which, or all of which, may require additional decomposition into
submodules before reaching manageable size. As each module is coded for
computer execution, appropriate control structures are used. The computer
can execute one statement after another sequentially, can execute one of two
or more possible sets of program code, and can execute sets of code repet-
itively. The program code determines which of these forms of control—se-
quential, conditional execution, or iteration—the computer will use at any
point in the program, and we will study each of these in subsequent chapters
in the text.

Such a problem-solving approach is central to structured programming.
As you learn Pascal with this text, you will develop structured programming
skills that can be transferred to any language which you may be called upon
to learn and use. Niklaus Wirth designed Pascal to encourage the learning
and application of these skills, so it is an ideal first language.

6 Introduction to Structured Pascal Programming

To start the process of learning to program and learning to program in
Pascal, this chapter will examine the following:

m Key characteristics of both computers and people
® A model program

® Debugging and types of errors

® The general format of all Pascal programs

Computers, People, and Pascal

An understanding of the essential characteristics of both computers and peo-
ple is critical for anyone attempting to interrelate the activities of the two.
Computers are general purpose machines that are capable of many marvel-
ous feats. They cannot, however, solve all the world’s problems. One must
have a general understanding of computer capabilities to make appropriate
use of them. The following is a partial listing of those capabilities. Remem-
ber, though, that the computer is new and our understanding of its potentials
is limited. We are exploring new frontiers, and there is much room for cre-
ativity, which is part of what makes computer science exciting.

Computer Characteristics

Computers are machines. They do not think, they are not alive, and they do
not have personalities. They do not like or dislike you. And yet each computer
is unique regarding interaction with its user and the ways it will respond to
instructions. Computers are valuable tools, and they act as extensions of
your mental capacities.

Computers are dumb. They do not have minds of their own, but are pro-
grammed to respond to a predetermined set of instructions in a predeter-
mined manner. Because of this, you must follow set patterns when working
with computers: A misplaced semicolon, comma or quote, or a misspelled
key word will cause the machine to cease functioning properly because the
predetermined patterns have been violated. This does not make working
with computers difficult, but it may make the process aggravating at times.
Correct application of the rules unlocks the power of this machine.

Computers are fast and accurate. The individual activities they perform
are quite simple. They can, however, perform several thousand of these ac-
tivities per second. Some computer actions are performed in a few nano-
seconds, and there are as many nanoseconds in a second as there are seconds
in thirty years. In the process of performing all of these activities, computers
do not get bored and make errors as humans in all likelihood would. To err is
human; to perform consistently with speed and accuracy is the function of

Chapter 1 Model Program 7

the computer. These two characteristics, speed and accuracy, are the real
strengths of the computer.

Computers have good memory. Data is retained for long periods of time
on disk and tape drives. These devices are quite reliable and, while their ca-
pacity increases everyday, their cost per unit of stored information is rapidly
decreasing. Massive amounts of data are currently stored in this way and
may be retrieved quickly and accurately.

Human Characteristics

To maximize the potential of the human/computer team, you must under-
stand the human user as well as the computer. People are smart. People take
a little bit of data and see creative implications. They generalize and see
meaningful connections between seemingly unrelated data elements.

On the other hand, people are slow and inaccurate. The computer is per-
forming activities in fractions of a second, and no matter how fast a person
is, the computer is faster. People tire quickly, and as a result, make mistakes.

Contrary to what your school experience may have led you to believe,
people have poor memories. We may be able to claim intelligence, which has
to do with reasoning ability, the ability to analyze a problem and see its basic
parts, and the ability to see patterns in apparently random pieces of data, but
we tend to remember incompletely, inaccurately, and for short periods of
time.

This survey of characteristics suggests that people formulate the relevant
problems and provide the relevant data for the computer. Computers then
calculate the relationships that exist between the data elements and logically
project the implications of those relationships. People discover the general
principles that bring meaning to apparent chaos and the computer helps de-
termine the accuracy of those principles. The computer/user team is very
powerful, and we are going to tap the power of the computer with the lan-
guage Pascal.

Pascal

Pascal was developed by Niklaus Wirth in the late 1960s and early 1970s and
was designed to embody structured programming principles in a computer
langauge. Because of its strengths, Pascal was soon used widely in colleges
and universities, in business, and in industry. Pascal’s chief strength, for our
purposes, lies in the good habits that it encourages. You will be a better pro-
grammer in whatever language or languages you ultimately use for having
programmed in Pascal. This is particularly true if Pascal is your first lan-
guage, since the first language you learn affects your approach to and use of

all others.

8 Introduction to Structured Pascal Programming

Business learned long ago that the majority of their programming budget
goes for program maintenance—fixing and upgrading. Structured program-
ming techniques make both of these aspects of maintenance much easier,
thereby increasing programmer productivity. In addition, structured pro-
gramming techniques strengthen general problem-solving skills so necessary
to higher-level analysis, system design, and management. Pascal also em-
bodies many of the features found in programming languages having more
specialized applications, which will give you a strong foundation in contem-
porary programming languages.

Exercises

1.1 What are the key characteristics of computers? Of people?

1.2 Briefly describe a computer application of which you are aware—for ex-
ample, word processing—and tell how it does or does not capitalize on
the strengths of both the computer and people.

1.3 Why learn Pascal if it is not the most popular business and scientific lan-
guage?

Programming and Debugging
Pascal Programming

To learn Pascal programming, you must write Pascal programs. There is a
big difference between understanding someone else’s program and being
able to write your own. Your success depends upon your active involvement.
You learn from studying the work of others, but the primary focus must be
on you and the programs you write. As you write, you will quickly acquire
new skills that will act as powerful tools in programming and in problem
solving.

Programming is an iterative process; that is, it requires you to make per-
haps several drafts of a program before you arrive at a satisfactory solution.
There is one fundamental principle of programming. Real programmers use
pencils, with big erasers. There is nothing so intimidating as a blank sheet of
paper, so get your initial ideas down quickly and then refine them. Work
from what you know. Much of a program is relatively standardized, so get
those parts down. Often one step will lead you to the next, which leads to the
next. You do not have to know where you are going to end before you can
start. Begin the process, and deal with obstacles as you encounter them.

Chapter 1 Model Program 9

A Model Program

Since there are considerable differences between computers, you will have to
learn the specifics of your computer from your instructor or the manuals that
come with that particular machine. The process of entering a program and
running it will begin to familiarize you with the workings of both the com-
puter and Pascal. The following program will illustrate many points about
Pascal which we shall explore together.

Programs are ways of solving problems. Our problem is how to get the
computer to write your name and course title on the screen. The following
program will do that for me. If you enter this program into the computer ex-
actly as written and then run it, my name and course will appear on the
screen. Try it.

Program: Heading

program heading (input, output);

(* print name/course *)
(*written by: programmer *)
(* location *)
(* date *)

procedure nameout;
(*print name/coursex)
begin(*nameout*)
writeln('William L. Raiser');
writeln('Computer Programming 1')
end; (*nameoutx*)

begin(*mainx)
nameout
end.

Debugging

If you do not follow the rules for writing Pascal programs, the computer will
quickly get lost and be unable to respond as it executes your program. In
such a case, the computer will give you an error message.

This may happen, for instance, if you make a typographical error when
entering the model program into the computer. If so, find the problem, cor-
rect it, and run the program again. Programs seldom run properly the first

