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Foreword

This text grew up from lectures given at the University of Rennes I during the academic
year 1988-1989. The main topics covered are second microlocalization along a lagrangian
manifold, defined by Sjéstrand in [Sj], and its application to the study of conormal sin-
gularities for solutions of semilinear hyperbolic partial differential equations, developed
by Lebeau [L4].

To give a quite self-contained treatment of these questions, we included some de-
velopments about FBI transformations and subanalytic geometry. The text is made of
four chapters. In the first one, we define the Fourier-Bros-Iagolnitzer transformation and
study its main properties. The second chapter deals with second microlocalization along
a lagrangian submanifold, and with upper bounds for the wave front set of traces one
may obtain using it. The third chapter is devoted to formulas giving geometric upper
bounds for the analytic wave front set and for the second microsupport of boundary
values of ramified functions. Lastly, the fourth chapter applies the preceding methods to
the derivation of theorems about the location of microlocal singularities of solutions of
semilinear wave equations with conormal data, in general geometrical situation. Every
chapter begins with a short abstract of its contents, where are collected the bibliograph-
ical references.

Let me now thank all those who made this writing possible. First of all, Gilles
Lebeau, from whom I learnt microlocal analysis, especially through lectures he gave with
Yves Laurent at Ecole Normale Supérieure in 1982-1983. Some of the notes of these
lectures have been used for the writing of parts of Chapter I. Moreover, he communicated
to me the manuscripts of some of his works quoted in the bibliography before they
reached their final form. Likewise, I had the possibility to consult a preliminary version
of the paper of Patrick Gérard [G], where is given the characterization of Sobolev spaces
in terms of FBI transformations I reproduced in Chapter one.

Moreover, this text owes much to those who attended the lectures, J.Camus,
J. Chikhi, O.Gues, M. Tougeron and, especially, G. Métivier whose pertinent criticism
was at the origin of many improvements of the manuscript. Lastly, let me mention that
Mrs Boschet typed the french version of the manuscript, with her well known efficiency.

Let me also thank Springer Verlag, which supported the typing of the english version,
and Mr. Kéllner who did the job in a perfect way.



Main notations

TM = tangent bundle to the manifold M.

T.M = fiber of TM at the point z of M.

T*M = cotangent bundle to the manifold M.

TrM = fiber of T*M at the point = of M.

TnM = normal bundle to the submanifold NV of M.

TXM = conormal bundle to the submanifold N of M.

For E a vector bundle over M, E \ {0} or E \ 0 denotes E minus its zero section.

For E, F two fiber bundles over M, E X j; F denotes the fibered product of E by F
over M.

Over a coordinate patch of M, E xp F = { (z,e,f); e€ E;, fEF, }

If h: M} — M, is a diffeomorphism between two manifolds, one denotes by h the map
it induces h : T*M; — T*M,. In local coordinates h(z,€) = (h(z), tdh(z)~! - £).

If zo € M, and yo € M>, one denotes by h : (M;,z¢) — (M2,y0) a germ of map from
the germ of M; at z¢ to the germ of M, of yo.

gr(y) = graph of a map ¥ from a manifold to a manifold.

d( , ) = euclidean (resp. hermitian) distance on the real euclidean (resp. the complex
hermitian) space.

d( ,L) = distance to a subset L.

d = exterior differential on a real manifold.

0 = holomorphic differential on a complex analytic manifold.

0 = antiholomorphic differential on a complex analytic manifold.

dL(z) = Lebesgue measure on C".

We will use the standard notation for the different spaces of distributions: C§° (com-
pactly supported smooth functions), S (Schwartz space), S’ (tempered distributions),
H* (Sobolev spaces), ...
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0. Introduction

We will first recall some elementary results concerning the Cauchy problem for the linear
wave equation. Then, we will indicate the new phenomenons appearing in the study of
semilinear wave equations and we will describe the theorems obtained by Beals, Bony,
Melrose-Ritter about semilinear Cauchy problems with conormal data. Lastly, we will
state “swallow-tail’s problem”, which will be solved in the last chapter of this text,
where we expose a method due to Lebeau.

Let us consider on R'*? with coordinates (t,z) = (¢,z1,...,24) the wave operator

5? ? XL o

O= = —-A;=——-Y —.
1) ot? ot? £~ 9z?
j=1""3

To solve the Cauchy problem is to find a solution u(¢, ) to the problem

Ou = f(t,z) t>0

) o = o()
Ju
B | o = uy(z)

where the functions f, ug, u; are given in convenient spaces.

Let us first consider the special case f = 0, up = 0, u; = ¢, Dirac mass at the origin
of R%. Using a Fourier transformation with respect to z, one sees that (2) admits a
unique solution ey (¢,z) in the space of continuous functions of t € Ry with values in
the space of tempered distributions on R?, whose Fourier transform with respect to
is given by
(3) (Fren)t:6) = i1 050
It follows from the preceding expression and from the Paley-Wiener theorem that
e4(t,z) is supported inside the forward solid light cone I' = {(t,2); |z| <t}.

The elementary solution e4 (¢, z) allows us to solve in general problem (2):

Theorem 1. Let f € L®(Ry, H*"(R?)), uo € H*(R?), uy € H*"(R?). Then (2) has
a unique solution u € C'(Ry, S'(RY)). It is given by

(4) uta)= [ [estt =2 —n)f(s,p)dsdy +exx o & bicy]

+ e4 * [U] ® 6::0] B
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Proof. Let us remark first that because of the support properties of e, the convolutions
make sense. One then checks at once that the function u given by (4) is a solution
of (2), and satisfies, because of (3), the regularity conditions given in the statement of
the theorem. The assertion of uniqueness is trivial.

One should remark that it follows from (4), and from expression (3), that if for every
keN Dffe LZ(R+,H’_j_kSRd)), then qu € L?(Ry, H*~%(R?)). This implies that
u|¢>o is in the space H (RYT)if f € H '(R'*?). In fact, one has just to write with
k=[s]+1

/a(r,g)m + 2472 dedr < / a(r, €)% (1 + £%)* de dr

[7I<I€]
[ eraa TR+ dedr
[€1<|7|

The formula (4) shows that the value of u at (¢,z) depends just on the value of f
at points belonging to (t,z) — I' and on the value of ug, u; at points of {y € R
(0,y) € (t,z)— T } (finite propagation speed). If {2 is an open subset of R'*¢, one says
that £2 is a determination domain of w = 2N {¢t = 0} if and only if for every (¢,z) € 2,
the set

{(s,y); (sgnt)(t —s) > |z —y| and (sgnt)(sgns) >0 }

is contained in §2. Using convenient cut-off functions, one deduces from Theorem 1 and
from the finite propagation speed property:

Theorem 2. Let 2 be a determination domain of w. Let ug € HY (w), u1 € HS ' (w)

and let f be a distribution on §2 which is, locally in £2, in the space L=°(R, H*~1(R%)).
Then the problem

Ou = f(t,z) in {2

(5) ult:() = Uy on w
du
A =u on w
3t |- 1

has a unique solution u which is in C°(R, H*~'(R?)) locally in £2. Moreover u belongs
to Hiy (2) if f € Hil'(92).

Let us now recall the theorem of propagation of C'*° microlocal singularities. We
will use the notion of C*° wave front set, whose definition is recalled in Section 1 of
Chapter I. Let us denote by CarO = {(t,:lt; 7,6) € T*f2; €% = 12 } the characteristic
variety of 0. If A is a subset of T*2N{+t > 0}, one will denote by P+(A) (resp. P_(A))
the union of A and of the forward (resp. backward) integral curves of the hamiltonian
field of o(0) = €2 — 72 issued from the points of AN Car O, and contained in £2:

(6) Pi(A)=AU ({ (t,z;7,€); £t > 0, €% = 72 and there is s € R with

+ s7 <0, (t+.sr,x—.s£;r,f)€A}ﬂT*.Q) .
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Since 2 is a determination domain, as soon as there is (¢,z; 7,£) € P+(A) with £2 = 72

and sp € R such that (t+so7,z — s0€;7,€) € P+(A), then the points (t + s7,z — s&; 7, )
belong to P+ (A) for every s € [0, so].
The theorem of propagation of microlocal singularities is then:

Theorem 3. Let u be a solution on 2 of the Cauchy problem (5). One has

(1) WF(u)|ti>0 C P+[(WF(f) N {£t > 0})U {(0,z;7,£); €2 =7% and
(z,€) € WF(up) UWF(u;) }] .

Proof. One knows (see [H], Section 8.2) that if v; and v, are two compactly supported
distributions

(8) WF (v *v2) C {(2,€); 3(z1,22) with (21,() € WF(vy),
(22,() € WF(vp) and z = 21 + 22 } .

Because of (4), we thus see that the inclusion (7) follows from the following lemma:

Lemma 4. One has

9 WF(ey) C Ti R7TAU{ (¢, 2;7,6); t >0, t2 =22,
{0}
(1,8) = A(t, —x) with \ € ]R} .

Proof. To show (9) we will prove that ey is conormal along the forward light cone. More
precisely, let M be the C°°(R?)-module of C* vector fields whose symbol vanishes on
the right hand side of (9). We will show that if (X;,...,Xp,) is an m-tuple of elements
of M one has X, --- X,ne— € HZ (R'*?) for every o < 1;‘1. One sees easily that M is
generated by the fields

a K o
t§+ZI’a
d 0 .
(10) -’fJaxk—Ika 1<j#k<d
a @ .
; B TN <9 <
"5t o, LEi1E

The action of the first one on ey gives —(d — 1)e4 and the other ones cancel e;. For
every compactly supported x and every m-tuple of vector fields X1, ..., Xy, of the form
(10) one has thus

— c!
11 Xy - Xisea )l £ Culfer(nél € ——— 5
( ) |X( 1 e+)l = |X€+(T 6)' 14 ITl 4 ,El

where the last inequality follows from (3).
Let I' = {(t,z); t = |z|}. The inclusion (9) may now be deduced from (11) in
the following way: if (to, 7o) € Supp(e4 ), t2 # z2, the fields X(z)ﬁj—, j=1,...,d, and
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X(z)% with x € C¢°(R'*4), Supp xNI" = 0, are in M and thus ey is C* close to (o, zo).
On the other hand, if (to, z¢) satisfies t3 = 22 # 0, there is, close to (o, o), a system of
local coordinates (y°,...,y%) such that I' is given by y° = 0. Then, the fields x(y)%,
ey X(y)% are in M if Supp x is small enough. It follows that WF(e4) C TpR!*¢

close to (o, z0).

In the preceding proof, we used the upper bound (11) of |xes|. In fact, there is a
better upper bound, we will have to use in Chapter IV:

Lemma 5. For every x € C§°(R'*?) there is a constant C > 0 with

(12) IXex(r, Ol < CA+ el + 17T A+ [IEl = I7I)~" -

Proof. Because of the support property enjoyed by e;, we may always assume that x
is a compactly supported function of the single variable t. Then, by (3), xes(7,€) =

f0+°° e""")((t)si;];{il dt. Using that for any complex number « one has

+o0 )
‘/ x(te M dt| < C(1 + |a])™!
0

the inequality (12) follows.

Before beginning the description of the nonlinear problems we will be interested in,
let us mention that, of course, Theorem 3 admits a more precise statement. In fact, as is
well known (see [H]), WF(u)\ WF(f) is foliated by the integral curves of the hamiltonian
field of &(O).

We will now study the problem of control of microlocal singularities of the solution
u, given in the space H? (f2) with s > lzid, of a semilinear Cauchy problem of the form

Gt = fi(h, 5, )
(13) ult:O = Uo
Ou B
at t=0 =W

where f is a C* function over R'*? x R and ug, u, are given on w = 2N {t =0} in
the space Hy (w) and H_'(w) respectively.

The new phenomenon one has to cope with to solve such a problem, is the one
of interaction of singularities. For instance, let us take two distributions with compact
support on R™ vy, v, and assume that WF(v;) C { (0;0€7), A >0 }, where ¢! and ¢?
are two non-zero elements of TFfR"™ such that there exist no negative real number p with
€' = p£%. Assume moreover that vy and v, belong to H?(R™) for some o > n/2. Then
the product vy v, exists, and defines an element of H?(R"™). Writing v7 - v2(£) = ¥y *2(£),

one sees easily that

(14) WF(viv2) C {(0»/\151 +X26%); A >0, Ay > 0} .
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In general, there is no better upper bound for WF(v;v2), i.e. there are, in this last set,
directions belonging neither to WF(v;) nor to WF(v2). Moreover, if ¢! and ¢? belong
to a same line and have opposite directions, the inclusion (14) is no longer true and any
¢ € T/ R™ may be inside WF(v1v3).

A similar phenomenon happens when one computes f(v) with f a C* function
of v. This suggest that, in general, the solution of a semilinear problem like (13) will
have much more singularities than the solution of the linear problem (5). As a matter
of fact, it is reasonable to suppose that u will have at least the singularities of the
solution to the linear problem, i.e. those given by the right hand side of (7) with f = 0.
But then, in the nonlinear term f(¢,z,u) of (12), these singularities will create new
ones by interaction, that is WF(f(¢,z,u)) will be bigger than WF(u). By (7) the upper
bound for WF(u) will have to take into account the points obtained by propagation
from WF(f(¢,z,u))N Car O. These new singularities will also, by interaction, contribute
to increase WF(f(t,z,u)) and so on.

In general, one cannot hope to obtain for nonlinear problems results like Theorem 3.
In fact, Beals [Bel] found an example of a solution of a semilinear Cauchy problem, with
Cauchy data smooth outside 0, and whose singularities are dense inside the light cone
{(t,z); |z| < t}. To get anyway results of control of singularities, one is thus lead to
make specific assumptions on the nature of the singularity of the Cauchy data ug, u;.
In particular, the notion of “conormal regularity” happened to be very well adapted to
that. Let V be a submanifold of the hyperplane {t = 0}. One says that u; € Hy >
if for every integer m and for every m-tuple of C* vector fields X, ..., X,, tangent
to V, one has X; --- X,,u; € Hl‘l:]. In particular, WF(u;) is contained inside T"}Rd. If
one solves a linear problem like (5) with f = 0 and such initial data, it follows from
Theorem 3 that

(15) WF(u)|es0 C {(t,2;7,€); >0, & =724#0, (z mé,g) eTyR*} .

When V is a hypersurface, the projection of the right hand side of (15) on R'*% is close
to t = 0 the union of two smooth hypersurfaces intersecting transversally along V. In
the case of a semilinear Cauchy problem like (13), Bony [Bol], [Bo3] proved that the
inclusion (15) remains valid for ¢ close to 0. In fact, the solution u is conormal along
the two outgoing hypersurfaces.

This result thus shows that close to t = 0, the solution of the semilinear problem
has the same singularities as the solution of the linear one. Anyway, on a longer interval
of time, other singularities happen as a consequence of nonlinear interaction. Let us
consider in 2 space dimension a solution u € H}}_, with s > d—}l, of the equation
Ou = f(t,z,u), such that u|<¢y<o is conormal along three characteristic hypersurfaces
X1, Y2, X5 which, in t < ty, intersect just two by two and transversally (conormal still
meaning that u|,<¢, keeps a fixed Sobolev regularity when one applies to it any number
of C*° vector fields tangent to £} UY, U X3). Assume moreover that in {t > 0}, Xy, 2o,
Y3 intersect transversally at a single point 0. Then, it has been proved independently by
Bony [Bo2] and Melrose-Ritter [M-R] that the solution u is C'*® outside T3 UX,U X3 UT
where I' is the boundary of the forward light cone with vertex at 0, and that u is
conormal along the smooth points of this intersection (see also Chemin [Ch] for an
extension and Beals [Be2], [Be3] for a more elementary proof). In such a case, we thus
see that interaction of singularities provokes the creation of new singularities along I
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The fourth Chapter of this text will be devoted to the study of a phenomenon of
interaction of singularities in the large. Consider in d = 2 space dimension a solution u
of a semilinear wave equation, whose Cauchy data are conormal along a real analytic
curve V of R?, having at a single point a non-degenerate minimum of its curvature
radius (for instance, a parabola).

The projection on R? of the flow out of Ty R3 N Car O by the hamiltonial field is the
union of two hypersurfaces of R3, which are smooth close to t = 0, V4, and V_. One of
them, say V_, remains smooth in the future, but the other one, V, has a pinching point
int > 0 (V4 is a swallow tail). The aim of Chapter IV is to prove, following Lebeau [L4],
that u|¢>o is smooth outside the union of V_, V, and of the two-dimensional forward
light cone with vertex at the pinching point of V.



I. Fourier-Bros-Iagolnitzer transformation and first
microlocalization

This first chapter is devoted to the definition of Fourier-Bros-Iagolnitzer (FBI) transfor-
mation and to its application to the study of microlocal regularity of distributions. The
first section studies FBI transformations with quadratic phases, as those introduced by
Bros-Iagolnitzer [Br-I] and Sjostrand [Sj]. In particular, we prove a characterization, due
to P. Gérard [G], of H® microlocal regularity of distributions in terms of FBI transfor-
mations. We also give, following [H], an inversion formula due to Lebeau [L1], expressing
a distribution as an integral of its FBI transform.

In the second section, we bring out the fundamental properties enjoyed by the
quadratic phase % This enables us to define general FBI transformations, using
phases satisfying these properties. We still follow the bibliographical reference [Sj].

The third section gives the definition of Sjostrand’s spaces and of transformations
between these spaces given by convenient phase integrals. We introduce the notion of
“good contour” and prove the “fundamental lemma” of [Sj].

The last section is intended for a proof of the theorem of change of FBI: following
Sjostrand, we show that one may pass from a FBI defined by a phase ¢ to a FBI defined
by a phase § using one of the transformations studied in the third section. This allows
us to deduce from the results of Section 1 a characterization of microlocal H*® regularity
in terms of FBI transformations with general phases.

1. FBI transformation with quadratic phase

Let u be a compactly supported distribution on R™. The FBI transformation of u is the
function on C" x [0, +o0o[ defined by:

(1.1) Tu(z,\) = /e-%@—‘)’u(t)dt .

It is an entire function of the complex variable z, real analytic with respect to the
parameter A. As u is of finite order, there exists an integer N and a constant C' > 0
such that

(1.2) |[Tu(z,y)] < C(1+ A+ |1111I|)N.5’%(1"”)2

for z € C*, A € [0, +o0|.
The transformation (1.1) is nothing else than a modified Fourier transform. As this
one, it will allow us to characterize (microlocal) regularity of u through better estimates
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than (1.2), the great parameter A playing now the same role than the norm of the
frequency variable in usual Fourier transform. Let us begin by the study of Sobolev
regularity. Recall the following:

Definition 1.1. Let u be a distribution on R"™. One says that u is H® microlocally at
(to,70) € T*R™ — {0} (what will be denoted by uw € H(, _,) or that (to,70) is not in

the H®-wave front set of u ((to,70) € WFs(u)) if there is x € C§°(R"), x = 1 close to
to, and I' a conic neighborhood of 79 in R™ — {0} such that

(1.3) /(7’)’|)?17(1')|2 dr < 400
r
where (7)2 =1+ 72
Our first aim is to prove, following P.Gérard [G], that we may characterize the

preceding H*-wave front set using Tu. Assuming u compactly supported — which does
not restrict the generality of the problem — we have:

Theorem 1.2 (P. Gérard). The point (to,70) € T*R™ — {0} is not in WF,(u) if and
only if there exists W neighborhood of xo = tg — 179 in C" such that

+oo
(1.4) / Nhae-d / |Tu(z, A)|2emD* dL(2) d\ < +oo |
1 w
dL(z) standing for Lebesgue’s measure on C™.
One should remark that, because of (1.2), one could replace in the first integral of
(1.4) the lower bound 1 by any real positive number without changing the condition.

The proof of the theorem relies on the following lemma.

Lemma 1.3. For a compactly supported distribution u € S'(R™), let us put
Zy(u) = { 7o € R"\ {0}; VI" open conic neighborhood of 7o

/ (1')2’|12(7')|2 dr = 400 } ;
r

A point 1o € R™ — {0} 1s not in Ys(u) if and only if there exists a neighborhood V of g
i R™ such that

+ oo
(1.5) / A"T"+“-1/ |Tu(z, A)|2e 29" dL(z) dA < 400 .
1 R® —:iV

Proof. Let Tu(z,\) be

(16) Tu(z,/\) — e—%(lm I)ZTU(.’E,A) _ /e—%(Rez—t)2—iA Im z(Rez—t)u(t) dt .

The Fourier transform of Tu(s — it, ) (s,7 € R™) with respect to s is
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2

By ) e300 (o)

(1.7) f’f\’u(a,r,/\) = (

whence the equality
2 n a2
(1.8) / |Tu(z,/\)|ze_'\“"”)2 dL(z) = (—w) / do/ dre 7= |ia(a)? .
Rr—iV A n 1%

Since the contribution to the last integral coming from the domain {|o| < 1} is expo-
nentially decreasing with respect to A, it is enough, to show the lemma, to prove that
there is a relatively compact neighborhood V of 75 in R™ — {0} such that

+ oo
(1.9) / A%—‘/ K{(o,M)|a(a)|? do d\ < 400
1 lo|>1
with
(1.10) Ky (o,)) = »\23/ e A= 4r
|4

Let us show that if V' CC V' are two relatively compact open subsets of R® — {0} and
f I'= ;5 tV, I'" = >, tV', there exist C' > 0 and € > 0 such that for every ¢ € R
with |o| > 1 one has:

(1.11) C—‘,\%|o|2’1p(a)/ e~ =" 4r < K3.(0,\)
Vv
2 =2
(1.12) K (o,)) < CA%|U|“1F,(0)/ e~(Am=9) gr 4 Ce—eO+1ER)
VI

In fact, let V" be an open subset such that V. cc V" cc V'.

~If $ g V" onehas |T— | > e(1+ J%l) for every 7 € V. Thus (1.12) is true because
of the exponential term in its right hand side and (1.11) is trivial.

~If £ € V", one has 1r/(0) = 1 and |o| ~ cst-A. Then, if r denotes the distance

between V' and V', r = d(V”, av')
[012’/ e~ A=) 4r > cst -/\23/ eI gr > cst AT
! Irl<r

and on the other hand

I\’V(Ua)‘) S /\28/ 6_/\1'2(17' = cst ./\2"_%

whence the inequality (1.12). In the same way, since A ~ cst -|o|,
Kyi(o, M) > /\2’/ e A dr > est Jo|?* A%
|r|<r
and

/ e~ (Ar=a) 4r <ecst-AT"
v

whence (1.11).
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Modifying V if necessary, we deduce from (1.11) and (1.12) that (1.9) is equivalent
to

+ oo
(1.13) / / Ant d/\/ g iAo drli(o)|?|o|** do < 400
cel J1 1%

with I' = s, tV.

One may always assume V of the form
(1.14) V={rey; a<lr|<B}

where v, is an open cone in R® — {0} and # > a > 0. One has then

+ oo +oo
/ At d/\/ e—W—”)ZdT:/ 9/ e~ (T 4r
1 |4 1 A AV
2 [ [T dA
2/6 (r=) [/ Cipevy(V)] dr
r 1
= log g‘ ; / e (=% qr |
a Jr

The last integral is uniformly bounded from above when o describes R", and uniformly
bounded from below by a positive constant when o stays in I'" with I'" cC I

It follows that (1.13) (and thus (1.9)) is equivalent (after a modification of I') to
the condition

(1.15) / lo|?*|@(o)|* do < +oo
o€l’
which is equivalent to 79 € Ys(u). The lemma is proved.

Proof of Theorem 1.2: The distribution u is H*® microlocally at (¢, 7o) if and only if
there exists Y € C§°(R™), x = 1 close to tg, such that 79 € X(xu) and thus, because of
the lemma, such that there is a neighborhood V' of 7y with

+oo
(1.16) / /\37”‘23-1/ IT(xu)(z, A)|2e 2m=)" dL(z)d\ < 400 .
1 Rn—iV

We just have to see that this condition is equivalent to (1.4).

Assume first that (1.16) is true and let U be a neighborhood of ¢y such that x =1
close to U. The integral defined as (1.16) with the integration domain R™ — 7V replaced
by U — iV is finite. But if Rez € U,

(Tu — T(xu))(z, )| = |T((1 = x)u)(z,N)| < CeFllma)=e)

and so (1.4) is satisfied with W =U — V.
Suppose now that (1.4) is true. Let U be a neighborhood of ¢y, V be a neighborhood
of 7o such that U — iV CC W and let xy € C§°(U) with x =1 close to t,. Writing

W)= [0 g = A [0 -0 G
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we get, with the notation (1.6):

T(xu)(t —it,)) = (—A)"/Tu(t —i0, \)eM T R(A(1 - 0)) (;T")n ,

Since x is rapidly decreasing, we obtain
| Roae P dLe) <€ [ [Tue P die) + 00
U—iv w
whence (1.16).

Theorem 1.2 gives as a corollary a characterization of the C'*° wave front set in
terms of FBI transformation.Recall that the point (t9,79) € T*R™ — {0} is not in the
C* wave front set of the distribution u, WF(u), if and only if there exist x € C§°(R"),
X = 1 close to ¢y and a conic neighborhood I of 7y in R™ — {0} such that for every
integer N:

(1.17) sup(r)N |xu(r)| < +oo .
r
One has

Corollary 1.4. The point (to,79) € T*R™ — {0} is not in WF(u) if and only if there
ezists a neighborhood W of to — ity in C® such that for every N € N:

(1.18) sup  AN|Tu(z, \)|e™2(m 9’ < oo .
T€W, A>1

Proof. The condition (tg,79) ¢ WF(u) is equivalent to the following assertion: There
exists a conic neighborhood I' of 7y in R™ — {0} and a neighborhood U of ¢y in R™ such
that for every s € R and every (t,7) € U x I, (t,7) € WF,(u). On the other hand,
condition (1.18) is equivalent to the existence of a neighborhood W of t; — i1y such that
for every s € R

+oo 3
(1.19) / A“T"“H/ |Tu(z, \)|?e 2™ )" dL(z) d) < +oo .
1 w

The result follows then from Theorem 1.2: one has just to remark that, by inspection
of its proof, one may choose in (1.19) a same neighborhood W for every s € R as soon
as one may take in (1.13) a same cone I" for every s (and conversely).

The transformation u — Tu(z, A) may also be used to characterize the analytic wave
front set (sometimes called analytic singular spectrum or microsupport) and the Gevrey
wave front set of a distribution u (in fact, it had been introduced for the first purpose
in [Sj]). Since we will just use this characterization, we choose to take it as a definition
here. Its equivalence with the other possible definitions (using inequalities similar to
(1.17) or through boundary values of holomorphic functions, or through cohomological
tools) may be found - in the case of the analytic singular spectrum - in [Sj], as well



12 I. Fourier-Bros-Iagolnitzer transformation and first microlocalization

as in the work of Bony [Bo0] proving that there is at most one “reasonable” notion of
singular spectrum.

Definition 1.5. i) One says that the point (tg,79) € T*R™ — {0} is not in the analytic
wave front set (or singular spectrum) of u, SS(u), if there exists a neighborhood W of
to — 179 in C™ and € > 0 such that

(1.20) . s[thi [e_%[(lm 1)2_5]|Tu(x, M| < 4oo .
x[1,+ 00

i1) One says that (t9,70) 18 not in the Gevrey-s wave front set of u, (s € |1,400[),
WFg:(u), if there exists a neighborhood W of g — i79 in C" and ¢ > 0 such that

(121) w S[lllr_:_ [e—%(lm 1)2+5,\1/3|Tu(r,/\)| < 4oo.
x[1,4 00

We shall conclude this first section by an inversion formula, due to Lebeau, which
gives an expression of a distribution u in terms of its FBI transform Tu. We follow
Hormander [HJ.

Theorem 1.6. Let u be a compactly supported distribution on R™. For every t € R
and r € ]0,1[ set

(1.22)  u,(t) = L2m)™" /0+Ooe_%/\"_1d,\/|ul_l<1—(w,%))Tu(t-{—irw,/\)dw

where D = (Dy,...,Dn) and D; = § 52
Then, for every r € ]0,1], u, 18 a real analytic function of t, which converges in the

sense of distributions towards u when r goes to 1—.

Proof The analyticity of u, follows from (1.2) and from the similar estimate for
’—LTu(.r A ] (which is obtained applying Cauchy’s formula on a polydisk with cen-
ter at z, with radius of order }).

Let ¢ € Cg°(R"™). By definition of Tu,

(1.23) /¢ ))Tu(t+zrw \)dt = (,(1+<w,§))T¢(-—irw,A))

for every r € ]0,1[, the bracket in the right hand side standing for the duality between
distributions and C'*° functions. Let

(1.24)  én(t) = L(2m)" "/O+ooe‘%/\"“d/\/lw[ 1(1+(w,§))T¢(t—irw,/\)d¢u.

Since T'¢(t — irw, A) is rapidly decreasing in A, uniformly with respect to ¢ staying in
a compact subset, w € S, r € [0,1[, ¢-(¢) is locally uniformly convergent towards
¢1(r) when r — 1— as well as all its derivatives. The theorem then follows from:



2. Fourier-Bros-Tagolnitzer transformations 13

Lemma 1.7. For every function ¢ € C§°(R™), one has

(1.25)  4(t) = i(2m)™" /0+°° A"’ldA/|w|=le‘%(1+(w, ?))T¢(t—iw,/\)dw.

Proof. From Fourier inversion formula, we see

e—0+

= lim —1——— ist—e|T 400V ds dr
(1.26) 60) = fim [ g dsar

We will deform the integration contour with respect to 7 in the complex domain. For
o € C" staying in |Imo| < |Reo|, one has Reo? > 0 and so, one can set |o| = Vo?
where we choose the determination of the square root which is positive on the positive
half-axis. Take @ > 0 small enough so that a|s| < 1 for every s € Supp(¢). If we put
o = T+ias|T|, one has Re || > cst |7|. Since do1 A- - -Ado,, = (1+ia(s, I:—I)) driA---AdTy,
Stokes formula applied to (1.26) allows one to replace the real integration contour in 7
by ¢ = 7 + tas|7|, i.e.

a2  60) = lmen |

pisT—as?|r|—c|o| (1 + ia(s, L)) ¢(s)dsdr .
R™ xR™ l

7|
There is a constant ¢ > 0, independent of ¢, such that
9 .. 2
l——(zsr —as®|t| — 5|a|)’ > c|7| .
Os

By integrations by parts, and since ¢ is C>°, we see that in (1.27) the integral with
respect to ds is rapidly decreasing in |7|, uniformly in e. Passing to the limit when
¢ — 0+ we obtain

(1.28) 40) = |

R™ xR»

eior—as’lr| (1 + ia(s, l%))qS(s) dsdr .
This identity holds for every small enough real positive number a. But since the right
hand side of (1.28) is an holomorphic function of a in the half-plane Rea > 0, (1.28) is
true for every such a.

Take a = %, apply (1.28) to ¢(t + -) and make the change of variable 7 = —\w,
A €ERY, we S* 1. One gets

(1.29) ¢(t)
+oo 3 .
= (2%)_"/(; AP /I“le1 dw/‘e"’\('_"“’)_Q_-'Z{L <1 + %(t — s,w)) #(s)ds

and equality (1.25) follows.



