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Introduction

The aim of this book is to present a recent mathematical tool, in a way which is very
accessible and free from mathematical techniques. The presentation developed here is in part
heuristic, with emphasis on algebraic calculations and numerical recipes that can be easily used for
numerical solutions of systems of equations modelling elasticity, elastoplasticity, hydrodynamics,
acoustic diffusion, multifluid flows. This mathematical tool has also theoretical consequences such as
convergence proofs for numerical schemes, existence - uniqueness theorems for solutions of systems
of partial differential equations, unification of various methods for defining multiplications of
distributions. These topics are not developed in this book since this would have made it not so
elementary. A glimpse on these topics is given in two recent research expository papers : Colombeau
[14] in Bull. of A.M.S. and Egorov [1] in Russian Math. Surveys. A detailed and careful self
contained exposition on these mathematical applications can be found in Oberguggenberger's recent
book [11] " Multiplication of distributions and applications to partial differential equations”. A set of
references is given concerning both the applied and the theoretical viewpoints. This book is the text of
a course in numerical modelling given by the author to graduate students at the Ecole Normale
Supérieure de Lyon in the academic years 1989 - 90 and 1990 - 91.

Many basic equations of physics contain, in more or less obvious or hidden ways, products
looking like "ambiguous multiplications of distributions" such as products of a discontinuous
function f and a Dirac mass centered on a point of discontinuity of f or powers of a Dirac mass. These
products do not make sense within classical mathematics (i. e. distribution theory) and usually appear
as "ambiguous" when considered from a heuristic or physical viewpoint. The idea developed here is
that these statements of equations of physics are basically sound, and that a new mathematical theory
of generalized functions is needed to explain and master them. Such a theory was first developed in
pure mathematics and then it was used in applications ; the mathematician reader can look at the books
Colombeau [ 2, 3 ], Part IT of Rosinger [ 1], Biagioni [ 1] and Oberguggenberger [11].

The ambiguity appearing in equations of physics when these equations involve "heuristic
multiplications of distributions" corresponds in our theory to the fact that, when formulated in the
weakest way, these equations have an infinite number of possible solutions. This recognition of
infinitely many solutions was essentially known and understood without our theory (at least in
Quantum Field Theory). To resolve the ambiguities our new setting can suggest more precise
formulations of the equations (these more precise formulations do not make sense within distribution
theory). On physical ground one chooses one of these more precise formulations in which there is no
more ambiguity. This technique is developed in this book on various examples from physics. This
gives directly new algebraic formulas and new numerical schemes. When one has algebraic jump
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formulas (for systems in nonconservation form) then it is an easy further step to transfer this
knowledge into numerical schemes of the Godunov type. This last numerical technique - Godunov
schemes for systems in nonconservation form (elastoplasticity, multifluid flows) or for
nonconservative versions of systems of conservation laws (hydrodynamics) - is the main application
developed in this text (chapters 4 and 5).

The book is divided into four parts. Part I (chapters 1 and 2) deals with preliminaries from
mathematics and physics. Part II (chapter 3 ) is a smooth introduction to our theory of generalized
functions. Part III (chapters 4, 5, 6) is the main part : there new numerical methods are developed ;
for simplicity most of them are presented on one dimensional models, but they extend to the 2 and 3
dimensional problems of industrial use or physical significance ; numerical results are presented and

references are given. Part IV is made of various complements.

Now let us describe briefly the contents of each chapter. In chapter 1 we introduce our
viewpoint, distribution theory and its limitations, in a way convenient for a reader only aware of the
concepts of partial derivatives (of functions of several real variables) and of integrals (of continuous
functions). Chapter 2 exposes the main equations of Continuum Mechanics considered in the book
(hydrodynamics, elastoplasticity, multifluid flows, linear acoustics). The aim of chapter 3 is to
describe this new mathematical tool without giving the precise mathematical definitions : the
viewpoint there is that these generalized functions can be manipulated correctly provided one has an
intuitive understanding of them and provided one is familiar with their rules of calculation. Chapter 4
deals with the classical (conservative) system of fluid dynamics. No products of distributions appear
in it , even in case of shock waves. But, surprisingly, our tool gives new methods for its numerical
solution : one transforms it into a simpler, but in nonconservative form, system and then one
computes a solution from nonconservative Godunov type schemes. In this case, since the correct
solution is known with arbitrary precision it is easy to evaluate the value of the new method (by
comparison with the exact solution and with numerical results from classical conservative numerical
methods). Chapters 5 and 6 deal with systems containing multiplications of distributions that arise
directly from physics : nonlinear systems of elastoplasticity and multifluid flows in chapter 5 and
linear systems of acoustics in chapter 6. In chapter 7 we expose in the case of a simple model (a self
interacting boson field) the basic heuristic calculations of Quantum Field Theory. This topic has been
chosen since Quantum Field Theory is the most famous historic example in which the importance of
multiplications of distributions was first recognized. Chapter 8 contains a mathematical introduction
to these generalized functions and mathematical definitions.

I am particularly indebted to A. Y. Le Roux and B. Poirée. I was working on the
multiplication of distributions from a viewpoint of pure mathematics when we met . Their research
work (numerical analysis and engineering, physics) had shown them the need of a multiplication of
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distributions. They introduced me kindly and smoothly to their problems. This was the origin of the
present book. I am also very much indebted to L. Arnaud, F. Berger, H. A. Biagioni, L.S. Chadli,
P. De Luca, J. Laurens, A. Noussair, M. Oberguggenberger, B. Perrot, I. Zalzali for help in works
used in the preparation of this book. The main part of the typing has been done by B. Mauduit to
whom I also extend my warmest thanks.



Chapter 1. Introduction to generalized functions and
distributions

§1.1 THE VIEWPOINT OF THIS BOOK.
Long ago physicists and engineers have introduced formal calculations that work well
(Heaviside [1] , Dirac [1] ) ; in particular they have introduced the Dirac delta function on R

8x)=0 if x=#0
+oo

8 (0) = +oo (so "large" that J 8(x) dx =1).

Intuitively the Dirac delta function can be considered as some kind of limit - in a sense to be made
precise-of the functions Sewhcn € — 0 : support of 8¢ c [- n(g), N(e)] withn(e) > 0 as€ — 0,
[8ex) ax = 1).

The theory of distributions (Sobolev [1], Schwartz [1] ) has given a rigorous
mathematical sense to § and other objects. But, in some important cases, in which the calculations
of physicists are complicated (and give results in agreement with those from experiments at the price
of ad hoc manipulations : for instance renormalization theory in Quantum Field Theory ), the theory
of distributions fails. One observes that these formal calculations involve unjustified products of
distributions, such as 82, the square of the Dirac delta function. L. Schwartz [2] has proved in 1954
the "impossibility of the multiplication of distributions”, even in a framework rather disjoint from the
theory of distributions. He has proved the non-existence of a differential algebra A (of any kind of
"generalized functions" on IR) containing the algebra € (IR) (of continuous functions on R) as a
subalgebra, preserving the differentiation of functions of class gl (i. e. the differentiation in A
coincides with the classical one) and having a few other natural properties (Leibniz's rule for the
differentiation of a product, the constant function 1 is the neutral element in A for the multiplication,
A contains some version of the Dirac delta function). Thus the theory of distributions is not really
concerned with this impossiblility result and it appears that the roots of the impossibility go back as
far as some incoherence between the multiplication and the differentiation in the setting of € Land
continuous functions. Since the emergence and recent development of computer science other kinds
of "multiplications of distributions " are successfully treated numerically, to model various problems
from Continuum Mechanics (elasticity, elastoplasticity, hydrodynamics, acoustics, electromagnetism,
... see the sequel of this book).Therefore, there is presently a situation of impasse between (rigorous)
mathematics from one side, theoretical physics and engineering from the other side.



Even, from a viewpoint internal to mathematics, one also faces a major problem : for most
systems of partial differential equations (including those modelling the more usual physical situations
) distribution solutions are unknown ; even, in many cases, one can prove - often trivially - the
nonexistence of distribution solutions. This motivates the introduction of new mathematical objects
(for instance the concept of "measure valued solutions to systems of conservation laws", see Di Perna
[1], Di Perna - Majda [1], ...). This need, although internal to mathematics, is indeed closely related
to the needs from physics and engineering (described above) since these explicit calculations or these
numerical recipes are nothing other than attempts for the resolution of equations.

We shall present a mathematical theory of generalized functions, in which the main
calculations and numerical recipes alluded to above make sense. This theory has recently been used in
Continuum Mechanics, for problems involving "multiplications of distributions". It permits to
understand the nature of the problems involved in these multiplications and it leads to new algebraic
formulas (jump conditions for systems in nonconservative form), and new numerical methods. From
a more theoretical viewpoint this theory gives solutions for previously unsolvable equations. In
physically relevant cases these solutions can be indeed classical discontinuous functions (representing
shock waves) which are not solutions within distribution theory. Since this theory is recent its

limitations are still unknown and we propose numerous research directions (applied and theoretical).

If Q denotes any open set in R™ we shall define a new concept of generalized functions on
(real valued or complex valued, even vector valued if needed ; we consider that they are real valued,
unless the converse is explicitly stated). The set of these generalized functions is denoted by § (Q) ;
€ (Q) is a_differential algebra (i. €. it has the same operations and rules as the familiar differential
algebra €°°(Q) of all ™ functions on Q). If D'(Q) is the vector space of all distributions on Q
(whose definition will be recalled in the next section) one has the inclusions

() D (Q)c§ Q).

€ (Q) induces on D' (Q) its addition, scalar multiplication and differentiation (there is no general
multiplication in D' (Q)). § (Q) induces on 8%(Q) all the operations in €°°(Q), in particular the
multiplication. Thus these generalized functions look as some "super concept of € functions". The
product of two arbitrary elements of D' (Q) will be in § (Q), not in D' (Q) in general. The
connection with the Schwartz impossibility result is - as this could be expected - rather subtle. The
algebra 8(Q) of all continuous functions on Q is not a subalgebra of § (Q) : the productin § (Q)
of two arbitrary continuous functions on Q2 does not always coincide with their classical product. The
subtility lies in that the difference (in § (Q)) between these two products is - in some sense to be
made precise after § (Q) will be defined - "infinitesimal" (although nonzero). Being "infinitesimal"
this difference can be considered as null as long as it is not multiplied by some "infinite quantity"



(infinite quantities like the value 8 (0) of the Dirac delta function at the origin make sense in our
setting). In all classical calculations dealing with continuous functions there do not appear such
"infinite quantities” and so the difference between the two products of continuous functions is then
always insignificant. The new theory is totally coherent with classical analysis and, at the same time,
it escapes from Schwartz impossibility result.

The above should not sound too much mysterious, since physicists and mathematicians are
indeed familiar with certain aspects of this subtility. Let us consider the following classical remark
from shock wave solutions of systems of conservation laws (Richtmyer [1] ).Consider the equation

(1) ug +uuy =0

and seek a travelling wave solution : i. e. u(x, t) = a for x < ct, u(x, t) = a+b for x > ct, a, b,

constants, ¢ is the constant velocity of the shock. Such a solution can be written as

2) ux,t)=bY(x-ct)+a

where Y is the Heaviside step function (Y (£) =0if £ <0, Y (§¥) = 1if ¥ > 0). Interpreting (1) as
ug +% (uz)x =0

(2) gives (Y'is the derivative of Y in the sense of distributions, see next section)

“be Y (x-ct) +5 (62 Y (x-ct) + 2ab Y (x- o) + a2y =0

since one has Y2 = Y (in the algebra of piecewise constant functions). One obtains (since Y' is non

Z€ro)

Now let us multiply (1) by u : this gives
2. _

4  uy+utug =0

that can be naturally interpreted as

@) 3@d+zady=0.



Putting (2) into (4) one gets for c¢ a value different from (3). One concludes that (1) and (4) have
different shock wave solutions : thus the correct statement of the equations has to be carefully selected
on physical ground, see Richtmyer [1]. The passage from (1) to (4) is a multiplication, and so we
have put in evidence some incoherence between multiplication and differentiation. This incoherence is
reproduced in the following calculations. Classically one has

S Y'=Y ¥n=23,..
Differentiation of (5) gives

©® nY¥ly=y

thus one has

@ 2Y Y' =Y.

Multiplication by Y gives

2Y2y' = YY"
Using (6) one gets

which is absurd since Y' # 0. Of course the trouble arises at the origin, since this is the unique
singular point of Y and Y'. If one accepts to consider Y? # Y (n =2, 3, ...) there is no more trouble.
Of course Y™ - Y is "infinitesimal" - in a sense to be made precise later, so that if- instead of
multiplying it by Y' - one multiplies it by some more reasonable function then one gets still an
"infinitesimal" result ; in this latter case one could as well have considered Y® = Y, as classically.
This examplifies the general fact that the theory of generalized functions in §(Q) can be considered
as a_refinement of classical analysis , without any contradiction with classical analysis and
distribution theory (as long as one considers only calculations valid inside distribution theory) ; the
above example of multiplication by u in (1) does not make sense inside distribution theory. These
calculations would a priori make sense in 8 but Y?#Yin € (R) as soon as n # 1. In view of that it
appears that the assumption that the classical algebra 8¢ (IR) (of all piecewise constant functions) is a
subalgebra of A (underlying in Schwartz's impossibility result, see § 1. 3) can be considered as

irrealistic.



Research problem. The reader is assumed to know the definition of § (Q) and Nonstandard
Analysis. Clarify the connections between our concept of generalized functions and the nonstandard
functions. Since there is no canonical inclusion of D' (Q) into the set of nonstandard functions
Nonstandard Analysis is probably much closer to the simplified concept § (Q2) defined below in §
8.4. Various constructions of Nonstandard Analysis mimicking the construction of § (Q) are given
in Oberguggenberger [9] and Todorov [1]. Since both theories realize a differential and integral
calculus dealing with infinitesimal and infinitely large quantities it seems to me that a fusion (of both
theories) is perhaps possible.For a comparison of the two theories in the context of nonlinear
hyperbolic equations see Oberguggenberger [12].

§1. 2. AN INTRODUCTION TO DISTRIBUTIONS. This section is intended to the reader
who does not know distribution theory ; it can be dropped by the other readers. If Q is an open set in
R™ we denote by D (Q) the vector space of all (scalar valued) €°° functions on Q with compact

support (such functions exist ! ; the support of a function f (denoted by supp f) is the closure of {x |
f(x) # 0 }). We say that a sequence (fy) of functions in 9 (Q) "tends to 0" (notation "f;—0") if and

only if 1) and 2) below are satisfied :
1) their supports are contained in a fixed compact subset of Q
2) for every partial derivative D (including the identity)

lim suP) IDfa(x) 1 =0.
n—ooo XE

Definition. A distribution on Q is a linear form T : O (Q) —C such that
T(fy)— 0in C as soon as "f; — 0".

We denote by D'(Q) the space of all distributions on Q. D'(Q) is a vector space.

We define partial derivatives of distributions by : if T € @'(Q),% e D'(Q) is the
1

distribution defined by 9L (¢) = - T (%%) Ve d (Q);
1 1

thus
DT (@) =¢-1°P)TDg) Voe 9 (@
if D is an arbitrary partial derivative operator and if o(D) is its order.

We multiply a €% function and a distribution according to the formula : if . € €% (Q) and
T € D'(Q), the product a. T € D'(Q) is defined by
@D@=T@ep) Voe D(Q).



Any locally integrable function is a distribution : if f € Llcl)c (Q) then we set

@)= [fx) e dx  Voe D (Q).
Q

Since it is known that f (¢) =0 Ve D (Q)=f=0in L1c1>c (Q) one has an inclusion
Lléc Q) cD(Q). fp=2,3, .., « one has similarly an inclusion L} (Q) c D'(Q).

One checks at once that the differentiation of a distribution and the multiplication by a 8
function extend these respective classical operations (in gl (Q) and in ngc (Q) respectively).

However note that if f is a classical function which is twice differentiable ( but not twice continuously
differentiable) and such that f'y y # f"y x (such functions exist !) then since "y y =f"y y in the

sense of distributions, the classical and distributional second derivatives are not identical.

Example 1 : the Dirac delta distribution defined by the formula & (¢) = ¢ (0). If e 8 (R),

0<e<l, 8520, JSE(X) dx =1, supp 8¢  [-€, + €], then if p € D(R)

JSE(X) o(x)dx = fBE(x) (@(0) +x¢'(Ox)) dx > @(0)ase > 00 <06 < 1).
R R
One says that 8¢ — 8in D' (R) as € — 0.

Example 2. the derivative of the Heaviside function : prove that the derivative Y' of the
Heaviside function Y is the Dirac distribution 8.

One can prove (Schwartz [1])the structure theorem :

Theorem . Any distribution is locally a partial derivative of a continuous function.
In other words : V T e D'(Q) Vx, € Q 3 an open neighborhood Vxo of x,in Q,3fe €

v x0) and 3 a partial derivation operator D such that
T|V =Df ind' (on)
Xo

where T | v is the restriction of T to on (obvious definition : one considers only the test functions
Xo

9 D (Vx) c D).



From this structure theorem the distributions constitute the smallest space in which it is
permitted to differentiate (infinitely) all continuous functions ( and also all LB functions p = 1, 2,

ey 92.).

Finally the distributions enjoy essentially all the nice properties of the € functions, with the
basic exceptions of the multiplication (as well as all main nonlinear operations ; try to multiply
"reasonably” Y and §, 8 and 8,..), of the restriction to a vector space (let 87 be the Dirac distribution

onR2: 32 (¢) = 9 (0,0) ; try to restrict 8 to R x {0}), and of the composition product (try to define
the composition f,8 (f € €% (R)).

Various extensions of the distributions have been proposed.

The ultradistributions. They are defined by replacing D(Q) by a smaller space of €
functions, satisfying for instance, in one dimension, bounds of the kind
1M, <MK KNS, s>1
(for s = 1 the function ¢ is analytic and so cannot have compact support unless it is the zero
function). Various spaces of ultra-distributions are defined as the duals of such subspaces of D(Q) ;
these spaces contain 9'(Q) but do not have very different properties ; see Lions-Magenes [1] for
definitions and references.

The analytic functionals. One considers a space of analytic functions, for instance the space
#(Q) of all holomorphic functions on an open set Q < C", equipped with the topology of uniform
convergence on the compact subsets of Q. The space of analytic functionals is defined as the dual
F€'(Q). Since any analytic function with compact support is the constant 0 there are difficulties to
define the support of an analytic functional ; further one can only multiply the analytic functionals by
analytic functions. See Martineau [1].

The hyperfunctions generalize both the distributions and the analytic functionals, see
Martineau [2]. Grosso modo a hyperfunction on R™ appears as a locally finite series of analytic
functionals that patch together.

There are linear PDEs without distribution solutions, but that have solutions which are
analytic functionals or hyperfunctions. However all these extensions of the distributions share
essentially the same properties : unlimited differentiation but impossibility of the multiplication in
general ; also, like in the setting of distributions, many very simple linear PDEs with polynomial
coefficients do not have solutions in these spaces, see § 1. 4 below.



Research Problem. The reader is assumed to know the definition of g(o) ; it is clear that this
definition can be modified so as to include the ultra-distributions (and so to permit a general
multiplication of ultra-distributions). Is it possible - probably at the price of a greater modification in
the definition of §(Q) - to include the analytic functionals and / or the hyperfunctions in a differential
algebra looking like §(Q) (thus permitting a general multiplication of analytic functionals and / or
hyperfunctions)? A special type of ultradistributions has been included in a larger algebra in
Gramchev [1].

§1.3 SCHWARTZ IMPOSSIBILITY RESULT,
Theorem [ Schwartz [2], 1954]. Let A be an algebra containing the algebra 8 (IR) of all continuous

functions on R a balgebra. Let us assume that the constant function 1 € € is the unit

element in A. Further let us assume that there exists a linear map D : A — A generalizing the

a. Db). Then one has_D? (Ixl) = 0.

Of course D (Ixl) has values -1 for x < 0 and +1 for x > 0, therefore p?2 (IxI) should be null outside 0,

"infinite" in O so that
+oo

+ oo
fD2(Ix|) dx = [D(Ixl)]  =2. Thus the conclusion of the theorem contradicts any reasonable
oo
intuition. In distribution theory D2(lxl) = 26 and so the above result shows that A cannot contain the
Dirac delta function, thus making the algebra A uninteresting.

Basic Remark, The distributions are not involved in Schwartz's impossibility result : the algebra
®(R), the differentiation of continuously differentiable functions, and the usual calculation rules are
the only ingredients that produce the impossibility. And all these ingredients are perfectly natural !
However it has already been noticed in §1.1 that the multiplication of piecewise constant functions
together with the usual rules of differentiation produces at once a contradiction.

Before the proof we give a lemma.

LemmaIn A xa=0 = a=0 (where x is the classical function x — x and where a is an
arbitrary element of A).

Proof of the theorem,

D(xIxl) = Dx . Ixl + x. D(Ixl) = IxI + x.D(IxI).



Therefore

DX(xIxl) = 2D(Ixl) + xD2(IxI).
In €1(R), hence in A :

D(xIxl) =2 Ixl.
Therefore

D?(xIxl) = 2DIxl.

It follows from the two above expressions for D2(x|xl) that x. D2(le) = 0 thus from the lemma D2(le)
=0
O

Proof of the lemma. The functions x(log Ix| —1) and x2(log Ixl 1) are in 8(IR) provided we give
them the value O for x = 0. Using Leibniz's rule in A

D{x(log IxI-1).x} = D{x(loglx1)}.x + x(loglx}-1)

D?({x(loglx-1).x} = D?{x(log IxI-1)}.x + 2 D{x(loglx|-1}.

Thus

(8) D2{x(loglx-1)}.x = D?{x2(loglx-1)} — 2D{x(loglx|-1)}.

But, since D coincides with the usual derivation operator on ©! functions and since the function x2
(log IxI - 1) is a 8! function :

D{x*(loglxl-1)} = 2x(loglx}-1) + x.

Therefore in A
©) D?{x%(loglxI-1)} = 2D{x(loglxl-1)} +1.

(8) and (9) yield :
D2(x(loglxl-1)}.x = 1.

To simplify the notation sety = Dz{x(loglxl—l} ;theny.x=1;thusx.a=0=y (xa)=0=(yx)a=0
= la=0=>a=0.
a
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A more detailed discussion is given in Rosinger [1] Part I chap 2.

Research problem. Many particular multiplications of distributions have been considered, see
Colombeau [1] chap 2, Rosinger [1] App. 5 in Part 2, Oberguggenberger [11]. Up to now it has been
proved that nearly all of them are particular cases (modulo some concept of "infinitesimality" as for
the product of continuous functions, see chapter 8) of the multiplication in §(Q), see

Oberguggenberger [1], Jelinek [1,2]. There remains some possible studies in this field.

§1.4 LINEAR PDEs WITHOUT DISTRIBUTION SOLUTION.

It is immediate to show that certain Cauchy problems do not have solution : for instance the equation

{(% " iéa;)u -0
u(x,0) = ug(x)

cannot have Cl(and also any distribution) solution in an open set Q intersecting the line t = 0 if u, is
€ but not analytic. Indeed a solution u would be holomorphic in Q(one can prove that if u €

D'(Q), Q c C open, then —a: u=0= ue H(Q). Therefore u, would be a real analytic function.
Z

The above equation cannot also have solutions in £ Nt > 0, the initial condition being understood as
a limit when t =& 0 : extend this solution to t < 0 by setting u(x,t) = u(x,-t) (where the bar denotes
complex conjugation) and apply the proof above. But one can prove (Hormander [1]) that for any €%

function f on R2 there is u € €°(IR2) such that (% + iaa;) u = f. Considerable effort has been

invested on the following problem. Let

a|p|
_ p oo n p=———
P(x,D) pezmip(x)l), (cpe 8™(R™), D axlp,_‘_axnpn)
Ipl<m

be a nonzero linear partial differential operator with ‘8% coefficients.

Problem. Let f € €(R") and let x, € R™ be given ; is there Vx,» open neighborhood of x, and u €
9)'(on) such that

Px,D) u=f in on?

H. Lewy [1] has produced a celebrated counterexample. Let x1,xp,y; € IR and let us consider the
equation
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) . )
W 5 - ‘aaTz #2100+ ix) g u=10).

Then for any f which is € and not analytic, and any point x,, € R3 equation (L) provides a negative

answer to the above problem.

Sketch of proof : for simplification we shall only consider the case x, = (0,0,y(l) ) and the case u is a

©! function (easy extension to the case u is a distribution). Set xq +ixp = y21/ 248, yp >0 and let

21
U(y1.y2) = iJCie y2'2 u(x1,x2,y1) d6.

From (L) one computes (Lewy [1]) that

U, .U _

Let F be real such that F' = f ; then the function
V(y1,y2) = U(y1,y2) — T F(y1)

is 81 and satisfies

AT A
dy; " dyp

in the intersection of an open ball in the (y;,y;) plane centered at (y(l), 0) and the half plane y, >0 ;

thus it is holomorphic in this upper half ball. Further U(y;, 0) = 0 and V(y;,0) = -TF(y;) and so V is
real valued on y; = 0. Thus V can be continued holomorphically in the whole of the open ball ; since

F(yy) = —i V(y1,0) Fis an analytic function and so f is analytic. O

A similar counterexample has been given in the space of hyperfunctions (larger than the space
of distributions), see Shapira [1]. Since then a great amount of work has been devoted to the research
of necessary and of sufficient conditions for local solvability, see Hérmander [2].

More details on the contents of this section, and other equations without solution, are given in
Rosinger [1] Partl chap.3.
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Research problem. It has been proved that also in'§ linear PDEs may fail to have solutions. Thus the
problem is to find - still in § or in a similar setting of generalized functions - a convenient
formulation of the PDEs, even the linear ones with 8% coefficients, allowing general existence
results. Of course coherence with the classical solutions - when they exist - should be obtained. An
attempt is presented in Rosinger [1] Part II chap 3, Egorov [1], Colombeau-Heibig-
Oberguggenberger [1].



Chapter 2. Multiplications of distributions in classical physics.

§2. 1 ELASTICITY AND ELASTOPLASTICITY. In this section we consider large deformations of
solid bodies, that could be produced for instance by a strong collision. These large deformations may
lead to plastic or other forms of structural failure. At the level of numerical computations this imposes
a Eulerian description (i. e. with a fixed frame of reference) since the Lagrangian description (i. e.
with a frame of reference following the deformations of the medium) is subject to numerical failure at
large deformations. Experience has shown that Eulerian methods can work very well. The system of
equations modeling the behaviour of solids includes at first the basic classical laws of conservation of
mass, momentum and energy ; usually viscosity is neglected. The basic conservation laws are
completed by "constitutive equations” obtained from experiments on each material. The constitutive
equations can take very different forms (they distinguish steal from rubber since the conservation
laws are the same ! ). In this text we limit ourselves to the simplest models of elasticity and
elastoplasticity, which can be stated as follows (see Arnaud [1] for instance). At first we begin with
the purely elastic case.

Notation. x = (x1,X3,X3) = space coordinate, t = time .

p = density

ﬁ = (up,up,u3) = velocity vector

¥ = stress tensor,with components G j,1 <ij <3
1 —
p =— 3 trace (X ) = pressure

1 = identity 3 x 3 matrix

S =5 + p1 = stress deviation tensor

= . 1 ,du u; ..

V = rate of deformation tensor, of components vi i =5 (35— + =4} 1<1i,j<3
P L2 (axj axi} J

uj

Q= spin tensor, of components ; Ji= % (g—l;l - BW)
1 )

¢ = total specific energy
I=e- % i ? = internal specific energy
% denotes the particle time derivative : if f is a function of (x,t) then

d

af=%‘ + ﬁ g-r_z?if

if A = (a;)) is a 3 x 3 tensor we set



