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Adriana for their loving support and patience throughout this work.



Prologue

In the course of their curriculum, physics and mathematics students are
usually taught the basics of Hilbert space, including operators of various
types. The justification of this choice is twofold. On the mathematical side,
Hilbert space is the example of an infinite dimensional topological vector
space that more closely resembles the familiar Euclidean space and thus it
offers the student a smooth introduction into functional analysis. On the
physics side, the fact is simply that Hilbert space is the daily language of
quantum theory, so that mastering it is an essential tool for the quantum
physicist.

Beyond Hilbert Space

However, after a few years of practice, the former student will discover that
the tool in question is actually insufficient. If he is a mathematician, he will
notice, for instance, that Fourier transform is more naturally formulated in
the space L! of integrable functions than in the space L? of square integrable
functions, since the latter requires a nontrivial limiting procedure. Thus en-
ter Banach spaces. More striking, a close look at most partial differential
equations of interest for applications reveals that the interesting solutions
are seldom smooth or square integrable. Physically meaningful events corre-
spond to changes of regime, which mean discontinuities and/or distributions.
Shock waves are a typical example. Actually this state of affairs was recog-
nized long ago by authors like Leray or Sobolev, whence they introduced the
notion of weak solution. Thus it is no coincidence that many textbooks on
PDEs begin with a thorough study of distribution theory. Famous examples
are those of Hérmander [H6r63] or Lions-Magenes [LM68].

As for physics, it is true that the very first mathematically precise formu-
lation of quantum mechanics is that of J. von Neumann [vNe55], in 1933,
which by the way yielded also the first exact definition of Hilbert space as we
know it. However, a pure Hilbert space formulation of quantum mechanies
is both inconvenient and foreign to the daily behavior of most physicists,
who stick to the more suggestive version of Dirac [Dir30]. A glance at the
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xiv Prologue

textbook of Prugovecki [Pru71] will easily convince the reader.... An ad-
ditional drawback is the universal character of Hilbert space: all separable
Hilbert spaces are isomorphic, but physical systems are not! It would be more
logical that the structure of the state space carry some information about the
system it describes. In addition, there are many interesting objects that do
not find their place in Hilbert space. Plane waves or J-functions do not be-
long in L2, yet they are immensely useful. The same is true of wave functions
belonging to the continuous spectrum of the Hamiltonian.

As a matter of fact, all these objects can receive a precise mathematical
meaning as distributions or generalized functions, that is, linear functionals
over a space of nice test functions. Thus the door opens on Quantum Mechan-
ics beyond Hilbert space [14]. Many different structures have emerged along
this line, such the rigged Hilbert spaces (RHS) of Gel'fand et al. [GV64], the
equipped Hilbert spaces of Berezanskii [Ber68], the extended Hilbert spaces of
Prugovecki [170], the analyticity/trajectory spaces of van Eijndhoven and de
Graaf [Eij83,EG85,EG86] or the nested Hilbert spaces (NHS) of Grossmann
[114]. Among these, the RHS is the best known and it answers the objec-
tions made above to the sole use of Hilbert space. A different approach to
its introduction is via the consideration of unbounded operators representing
observables, as proposed independently by J. Roberts [171,172], A. Bohm
[47], and one of us (JPA) [8,9]. We will discuss this approach at length in
Chapter 5.

The central topic of this volume, namely partial inner product spaces (P1p-
spaces), has its origin in the first meeting between A. Grossmann and JPA,
in 1967. Both of us were already working beyond Hilbert space, with NHS
for AG and RHS for JPA. We realized that we were in fact basically doing
the same thing, using different languages. After many discussions, we were
able to extract the quintessence of our respective approaches, namely, the
notions of partial inner product and partial inner product space (PIP-space).
A thorough analysis followed, that led to a number of joint publications
[12,13,17-19], later with W. Karwowski [22,23]. Students joined in, such as
F. Mathot [Mat75], A-M. Nachin [Nac72] and J. Shabani [177]. But gradually
interest moved to other subjects, such as algebras of unbounded operators
and partial operator algebras, culminating in the monograph by the two of
us with A. Inoue [AIT02]. But sometimes PIP-spaces came back on the stage
also when considering partial *-algebras. Indeed, in their study on partial
*_algebras of distribution kernels, Epifanio and Trapani [77] introduced the
notion of multiplication framework, to be developed later by Trapani and
Tschinke [183] when analysing the multiplication of operators acting in a
RHS. A multiplication framework is nothing but a family of intermediate
spaces (interspaces) between the smallest space and the largest one of a RHS
and these spaces indeed generate a true PIP-space.

But, on the whole, the topic of PIP-spaces remained dormant for a number
of years, until one of us (JPA) was drawn back into it by the mathemati-
cal considerations of the signal processing community. There, indeed, it is
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commonplace to exploit families of function or distribution spaces that are
indexed by one or several parameters controlling, for instance, regularity or
behavior at infinity. Such are the Lebesgue spaces {L?,1 < p < oo}, the
Wiener amalgam spaces W(LP,¢9),1 < p,q < oo, the modulation spaces
MR, 1 < p,q < oo, the Besov spaces By,,1 < p,q < o0. The interesting
point is that individual spaces have little individual value, it is the whole
family that counts. Taking into account the duality properties among the
various spaces, one concludes that, in all such cases, the underlying structure
is that of a PIP-space. In addition, one needs operators that are defined over
all spaces of the family, such-as translation, modulation or Fourier transform.
And the p1p-space formalism yields precisely such a notion of global operator.

Thus it seemed to us that time was ripe for having a second look at the
subject and write a synthesis, the result being the present volume.

About the Contents of the Book

The work is organized as follows. We begin by a short introductive chapter,
in which we restrict ourselves to the simplest case of a chain or a lattice of
Hilbert spaces or Banach spaces. This allows one to get a feeling about the
general theory and, in particular, about the machinery of operators on such
spaces. The following two chapters are the core of the general theory. It is
convenient to divide our study of PIP-spaces into two stages.

In Chapter 1 we consider only the algebraic aspects, focusing of the gener-
ation of a PIP-spaces from a so-called linear compatibility relation on a vector
space V and a partial inner product defined exactly on compatible pairs of
vectors. Standard examples are the space w of all complex sequences, with
the partial inner product inherited from ¢, whenever defined, and the space
L} (X, du) of all measurable, locally integrable, functions on a measure space
(X, p), with the partial inner product inherited from L?. The key notion
here is that of assaying subspaces, particular subspaces of V' which are in a
sense the building blocks of the whole construction. Given a linear compatibil-
ity # on a vector space V, it turns out that the set of all assaying subspaces,
(partially) ordered by inclusion, is a complete involutive lattice denoted by
F(V,#). This will lead us to another equivalent formulation, in terms of
particular coverings of V by families of subspaces. Now the complete lattice
F(V,#) defined by a given linear compatibility can be recovered from much
smaller families of subspaces, called generating families. An interesting obser-
vation is that, in many cases, including the two standard examples mentioned
above, there exists a generating family consisting entirely of Hilbert spaces.
The existence of such generating families in crucial for practical applications;
indeed they play the same role as a basis of neighborhoods or a basis of open
sets does in topology. And in fact, they will naturally lead to the introduction,
in Chapter 2, of a reduced structure called an indexed PIP-space.
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We conclude the chapter with the problem of comparing different compat-
ibilities on the same vector space. A priori several order relations may he
considered. It turns out that the useful definition is to say that a given com-
patibility #; on V' is coarser than another one #- if, and only if, the complete
lattice F(V, #1) is a sublattice of F(V, #2), on which the two involutions co-
incide (involutive sublattice). This concept is useful for the construction of
PIP-space structures on a given vector space V. Most vector spaces used in
mathematical physics carry a natural (partial) inner product, defined on a
suitable domain I' C V x V. With trivial restrictions on I' (symmetry, bilinear-
ity), the condition: f#g < {f,g} € T, actually defines a linear compatibility
# on V. Then all linear compatibilities which are admissible for that partic-
ular inner product are precisely those that are coarser than #, which in turn
are determined by all involutive sublattices of F(V, #). On the other hand,
the problem of refining a given compatibility (and then a given PIP-space
structure) admits in general no solution, even less a unique maximal one.
However, partial answers to the refinement problem can be given, but some
additional structure is needed, namely topological restrictions on individual
assaying subsets. This will be the main topic of Chapter 5.

Then, in Chapter 2, we introduce topologies on the assaying subspaces.
With a basic nondegeneracy assumption, the latter come as compatible pairs
(V;, V&), which are dual pairs in the sense of topological vector spaces. This
allows one to consider various canonical topologies on these subspaces and
explore the consequences of their choice. It turns out that the structure so
obtained is extremely rich, but may contain plenty of pathologies. Since the
goal of the whole construction is to provide an elementary substitute to the
theory of distributions, we are led to consider a particular case, in which all
assaying subspaces are of the same type, Hilbert spaces or reflexive Banach
spaces. The resulting structure is called an indezed PIP-space, of type (H),
resp. type (B). However, a further restriction is necessary. Indeed, in such a
case, the two spaces of a dual pair (V,., V&) are conjugate duals of each other.
but we require now, in addition, that each of them is given with an explicit
norm, not only a normed topology, and the two norms are supposed to be
conjugate to each other also. In that case, we speak of a lattice of Hilbert
spaces (LHS), resp. a lattice of Banach spaces (LBS). These are finally the
structures that are useful in practice, and plenty of examples will be described
in the subsequent chapters.

Chapter 3 is devoted to the other central topic of the book, namely, op-
erators on (indexed) PIP-spaces. As we have seen so far, the basic idea of
piP-spaces is that vectors should not be considered individually, but only in
terms of the assaying subspaces V,., which are the basic units of the structure.
Correspondingly, an operator on a PIP-space should be defined in terms of
assaying subspaces only, with the proviso that only continuous or bounded
operators are allowed. Thus an operator is what we will call a coherent col-
lection of continuous operators. Its domain is a nonempty union of assaying
subspaces of V' and its restriction to each of these is linear and bounded into
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the target space. In addition, and this is the crucial condition, the operator
is mazimal, in the sense that it has no proper extension satisfying the two
conditions above. Requiring this essentially eliminates all the pathologies as-
sociated to unbounded operators and their extensions, while at the same time
allowing more singular objects.

Once the general definition of operator on a PIP-space is settled, we may
turn to various classes, that more or less mimick the standard notions. For
instance, regular and totally regular operators, homomorphisms and iso-
morphisms, unitary operators (with application to group representations),
symmetric operators. The last class examplifies what we said above, for it
leads to powerful generalizations of various self-adjointness criteria for Hilbert
space operators, even for very singular ones (the central topic here is the
well-known KLMN theorem). For instance, this technique allows one to treat
correctly very singular Schrodinger operators (Hamiltonians with various
J-potentials). In the last section, we turn to another central object, that
of a projection operator, and the attending notion of subspace. It turns out
that an appropriate definition of pPIP-subspace permits to reproduce the fa-
miliar Hilbert space situation, namely the bijection between projections and
closed subspaces. In addition, this leads to interesting results about finite
dimensional subspaces and pre-Hilbert spaces.

Chapter 4 is a collection of concrete examples of PIP-spaces. There are
two main classes, spaces of (locally) integrable functions and spaces of se-
quences. The simplest example of the former is the family of Lebesgue space
L?, 1 < p < oo, first over a finite interval (in which case, one gets a chain of
Banach spaces), then over R or R™, where a genuine lattice is generated. A
further generalization is the (wide) class of Kothe function spaces, which con-
tains, among others, most of the spaces of interest in signal processing (see
Chapter 8). The other class consists of the Kothe sequence spaces, which
incidentally provide most of the pathological situations about topological
vector spaces! Next we briefly describe the so-called analyticity/trajectory
spaces, which were actually meant as a substitute to distribution theory,
better adapted to a rigorous formulation of Dirac’s formalism of quantum
mechanics. Another class of pIP-spaces concludes the chapter, namely spaces
of analytic functions. Starting from the familiar Bargmann space of entire
functions [42,43], we consider first a LBS that generates it (also defined by
Bargmann). Then we turn to spaces of functions analytic in a sector. The
PIP-space structure we describe, inspired by the work of van Winter in quan-
tum scattering theory [188,189], leads to a new insight into the latter. In
the same way, we present some PIP-space variations around the Bergman or
Hardy spaces of functions analytic in a disk.

In Chapter 5, we return to the problem of refinement of PIP-space struc-
tures, in particular, the extension from a discrete chain to a continuous one,
and similarly for a lattice. When the individual spaces are Banach spaces,
we are clearly in the realm of interpolation theory. In the Hilbert case, one
can also exploit the spectral theorem of self-adjoint operators. The simplest
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example is that of the canonical chain generated by the powers of a positive
self-adjoint operator in a Hilbert space, where both techniques can be used.
The next case is that of a genuine lattice of Hilbert spaces. In both cases, there
are infinitely many solutions. Next we explore how a RHS D C ‘H C D* can
be refined into a LHS (here H is a Hilbert space, D a dense subspace, endowed
with a suitable finer topology, and D* its strong conjugate dual). This is an
old problem, connected to the proper definition of a multiplication rule for op-
erators on a RHS. The key is the introduction of the so-called interspaces, that
is, subspaces £ such that D C £ C D*. This is, of course, strongly reminis-
cent of Laurent Schwartz’s hilbertian subspaces of a topological vector space
and corresponding kernels [175]. Indeed, the crucial condition on interspaces
may already be found in that paper. As an application, we construct a family
of Banach spaces that generalize the well-known Bessel potential or Sobolev
spaces. We also discuss the PIP-space structure of distribution spaces. In par-
ticular, we review the elegant construction of the so-called Hilbert spaces of
type S of Grossmann, which enables one to construct manageable spaces of
nontempered distributions.

The next step is the construction of PIP-spaces generated by a family
or an algebra of unbounded operators, equivalently, a (compatible) family
of quadratic forms on a Hilbert space. In particular, if one starts from the
algebra of regular operators on a PiP-space V', one ends up with two PIP-space
structures on the same vector space. Comparison between the two leads to
several situations, from the ‘natural’ one to a downright pathological onc.
Examples may be given for all cases, and this might give some hints for a
classification of PIP-spaces.

In Chapter 6, we consider the set Op(V') of all operators on a PIP-space V'
as a partial *-algebra. This concept, developed at length in the monograph by
Antoine-Inoue-Trapani [AIT02], sheds new light on the operators. Of particu-
lar interest is the case where the Pip-space V' is a RHS. The proper definition
of a multiplication scheme in that context has generated some controver-
sies in the literature [135,136], but the PIP-space point of view eliminates
the pathologies unearthed in these papers. In the same vein, we consider
also the construction of representations of partial *-algebras, in particular,
the Gel’fand-Naimark—Segal (GNS) construction suitably generalized to the
PIP-space context. As for general partial *-algebras, one has to take account
of the fact that the product of two operators is not always defined, which re-
quires replacing positive linear functionals by sesquilinear ones, in particular
the so-called weights. Clearly this kind of topic implies borrowing ideas and
techniques from operator algebras.

The last two chapters are devoted to applications of PIP-spaces. In
Chapter 7, we consider applications in mathematical physics, in the next
one applications in signal processing. We begin with quantum mechanics. As
mentioned at the beginning of this prologue, the insufficient character of a
pure Hilbert space formulation led mathematical physicists to introduce the
RHS approach, which then generalizes in straightforward way to a PIP-space
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approach, via the consideration of the observables characterizing a physical
system (the so-called labeled observables). A different generalization that we
quickly mention is that of the analyticity/trajectory spaces. A spectacular
application of the RHS point of view is a mathematically correct treatment
of very singular interactions (4-potentials or worse). A case where a PIP-space
formulation yields a new insight is that of quantum scattering theory, along
the lines developed by van Winter [188,189]. At play here are the spaces
of functions analytic in a sector, described in Chapter 4. Also we obtain a
precise link to the dilation analyticity or complex scaling method (CSM),
nowadays a workhorse in quantum chemistry. We also make some remarks on
the still controversial time-asymmetric quantum mechanics, which is based
on an energy-valued RHS. The next topic where PIP-spaces are used since
a long time is, of course, quantum field theory. In the axiomatic Wightman
formulation, based on (tempered) distributions, a RHS language emerges
naturally. Two explicit instances, that we describe in some detail, are the
construction of the theory from the so-called Borchers algebra and the
Euclidean approach of Nelson. Similarly, a proper definition of unsmeared
field operators require some sort of PIP-space structure. Another area where
PIP-spaces have been exploited is that of Lie group representations, using
Nelson’s theory of analytic vectors, that we touch briefly for concluding the
chapter.

The final Chapter 8 is devoted to applications in signal processing. Namely,
we explore in some detail a number of families of function spaces that yield
the ‘natural’ framework for some specific applications. Typically, each class is
indexed by two indices, at least. One of them characterizes the local behavior
(local growth, smoothness), whereas the other specifies the global behavior,
for instance the decay properties at infinity. The first example is that of
mixed-norm Lebesgue spaces and Wiener amalgam spaces (the first spaces of
this type were introduced by N. Wiener in his study of Tauberian theorems).
For instance, the amalgam space W (LP, £9) consists of functions on R which
are locally in L? and such that the LP norms over the intervals (n,n + 1)
form an ¢9 sequence. This clearly corresponds to the local vs. global behavior
announced above. It turns out that such spaces (and generalizations thereof)
provide a natural framework for the time-frequency analysis of signals. The
same may be said, a fortiori, for the modulation spaces M9, which are
defined in terms of the Short-Time Fourier (or Gabor) Transform (m is a
weight function and 1 < p,q < o0). Among these, a special role is played
by the space Ml1 1 called the Feichtinger algebra and denoted usually by
Sp (it is indeed an algebra both under pointwise multiplication and under
convolution). &y is a reflexive Banach space and one has indeed S C Sy C
L% C 8 C 8% (thus Sy and its conjugate dual are interspaces in the Schwartz
RHS). In practice, Sy may often advantageously replace Schwartz’s space S,
yielding the prototypical Banach Gel’fand triple Sy C L? C S;°, which plays
an important role in time-frequency analysis.
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A second important class is that of Besov spaces, which are intrinsically
related to the (discrete) wavelet transform. Typical results concern the spec-
ification of a space to which a given function belongs through the decay
properties of its wavelet coefficients in an appropriate wavelet basis. Finally,
we survey briefly a far reaching generalization of all the preceding spaces,
namely, the so-called co-orbit spaces. These spaces are defined in terms of
an integrable representation of a suitable Lie group. For instance, the Weyl-
Heisenberg group leads to modulation spaces, the affine group of the line
yields Besov spaces, SL(2,R) gives Bergman spaces.

For the convenience of the reader, we conclude the volume with two short
appendices. The first one (A) gives some indications about the so-called
Galois connections (used in Chapter 1), and the second (B) collects some
basic facts about (locally convex) topological vector spaces, mostly needed
in Chapter 2.

A final word about the presentation. Although a large literature already
exists on the subject, we have decided to mention very few papers in the
body of the chapters. Instead, each of them concludes with notes that give
all the relevant bibliography. We have tried, in particular, to trace most of the
results to the original papers. Thus a substantial part of the book consists of
a survey of known results, often reformulated in the PIP-space language. This
means that, in most cases, we state and comment the relevant results, but
skip the proofs, referring instead to the literature. Clearly there are omissions
and misrepresentations, due to our own ignorance and prejudices. We take
responsibility for this and apologize in advance to those authors whose work
we might have mistreated. 5]

Jean-Pierre Antoine (Louvain-la-Neuve)
Camillo Trapani (Palermo)
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