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X PREFACE

(infinite-dimensional) bilinear systems. Hence we may obtain bilinear
approximations to many types of nonlinear systems.

In Chapter 4 we explore the relation between bilinear representations
of nonlinear systems and their Volterra series expansions. Moreover, it is
shown that bilinear systems have many of the properties of linear systems
(or these properties can be generalized to bilinear systems) and so it will be
seen that such systems form a very important extension to the class of linear
systems. We also present an approach to the frequency-domain theory of
nonlinear systems which gives rise to the notion of poles and zeros. A different
theory of nonlinear system zeros can be found in Nijmeijer and Schumacher,
1985.

Finally, in Chapter 5, we present an introduction to nonlinear distributed
parameter systems. Because of the importance of bilinear systems in finite-
dimensional space, we restrict attention mainly to this kind of system. This
means that we can work on a (flat) Hilbert or Banach space. One of the main
outstanding problems in nonlinear systems theory is to derive results similar
to those in Chapters 2—4 for infinite-dimensional systems defined on Banach
manifolds.

Since we work throughout in a differentiable category, the methods
developed here do not apply to engineering systems containing hysteresis,
dead zones, discontinuities, etc. Moreover we do not discuss discrete systems,
although much of what we present here holds, when suitably modified, for
discrete systems. The third major area of systems theory which is not covered
here is that of stochastic systems. Differential-geometric methods used here
for the study of deterministic systems can also be applied to stochastic
systems; we refer the reader to Marcus, 1984 or Collingwood, 1985.
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1 MATHEMATICAL APPARATUS

1.1 DIFFERENTIABLE MANIFOLDS
1.1.1 Differentiable manifolds

We shall first recall some elementary notions from topology. A ropological
space (X, 0) is a set X, together with a set @ of subsets of X which satisfies
the properties

(@ 9,Xeo
(b) if Xi, X,€0 then X,N X,€ 0

(©) if {Xalaca S O then |J X.€0.
a€A

The elements of ¢ are called open subsets of X. A neighbourhood of a
point x € X is a set N such that x€ Y N for some Y€ ¢. The space X is
called a Hausdorff space if xi,x:€ X, x1 # x» imply that there exist
X1, X2€ 0 with x1€ X, x2€ X» and X, N X =0. An open cover of a
subset Y S Xisaset ¢, S & such that Y C (J0. The subset Y is compact
if every open cover has a finite subcover.

A function f: X — Y hetween topological spaces X and Y is con-
tinuous (at x€ X) if f~'(W) is open for each open set Win Y containing
S(x). The function fis a homeomorphism if it is bijective and fand f~!
are continuous.

A metric space (X, d) is-a set X together with a distance function
d: XX X— R" such that

(@) d(x,y)=0if and only if x=y
(b) d(x,y)=d(y, x) for all x,ye X
(©) d(x,y) < d(x,z)+ d(z,y) for all x,y,z€ X.

The open ball in X with centre x and radius ¢ is the set

Be(x)={ye X: d(x,y)<e}.

1



2 MATHEMATICAL APPARATUS

Open sets in a metric space are unions of open balls and thus a metric space
is a topological space.

The distance between a set Y and a point x in a metric space is defined
as

d(x,Y)=inf {d(x,y)}.
yeyY

The distance between subsets Y, Z is defined by
d(Y, Z)=max{sup d(y, Z), sup d(Y,z)}.
yeyY z€eZ

Note that the set (2%, d) of all subsets of X with this distance function is
not a metric space since

d(Be(x), Be(x))=0

for any ball Be(x)2 {ye€ X: d(x,y)<e}. However, if we define the
equivalence relation ~ on 2% by

Y~ Z if and only if d(Y, Z)=0,

then (2*/~, d) is a metric space, and d is then called the Hausdorff metric.

Let M be a topological space. A chart on M is a pair (U, ¢ ) where
U € M s open and ¢ is a homeomorphism of U onto an open subset of R”,
for some n. If x': R" - R denotes the standard projection on the ith com-
ponent then, for any chart (U, ¢), x'o¢: U— R is called the coordinate
Junction. We shall often write x' o ¢ simply as x'; then we are effectively
identifying U with an open set in R” via the homeomorphism ¢. Two charts
¢1: Ui = R", ¢2: U, = R" are compatible if the mapping

b2001 " 91 (UiNUs) = ¢2(Ui1NUs)

is of class C* (i.e. all partial derivatives exist and are continuous). Of
course, if UiNU, =0, then the charts are trivially compatible.

An atlas for the topological space M is a collection of compatible
charts (Ui, ¢:) such that |J:U;= M. An atlas is complete if it cannot be
included in a larger atlas.

A differentiable manifold (of class C®) is a Hausdorff space with a
complete atlas of charts. It is possible to specify a differentiable structure
on M by defining any C* atlas on M compatible with the given complete
atlas, since the completions of both atlases are the same. Any C* atlas on
M will therefore define a differentiable structure.

It is easy to see that the number n must be constant on each connected
component of M. If n is constant on the whole of M, then # is called the
dimension of the differentiable manifold.

REMARK If we consider C” mappings throughout the above discussion, we
obtain C" manifolds rather than C* ones. Similarly, if R" is replaced by C”
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and we consider mappings which are holomorphic then we obtain analytic
manifolds (of class C*). An atlas then defines the analytic structure.

Examples

1. R™ with the identity chart id: R” > R” is a differentiable manifold of
dimension 7.

2. The (n - 1)-sphere $"~' = R" defined by §”~! = {x¢ R": lxll=1}isa
differentiable manifold of dimensions 7 — 1, whose differentiable
structure can be defined by two charts. (Note that no compact manifold
can be specified by a single chart.)

3. Given two manifolds M, N with differentiable structures {(U;, ¢i)},
{(Vi,¥j)} we can define a differentiable structure on the topological
Cartesian product M x N as the collection of product charts
{(Uix Vj, ¢i X y;)}, these clearly being compatible. For example, the
product of two circles 7°=S'x S' defines a torus; more generally,
T"=S"x--xS' (n times) is an n-dimensional torus.

4. The set of n X m matrices M, is a differentiable manifold with a single
chart ¢ : Myxm = R"*" defined by ¢(A4) = (aij), where A is the matrix

(ay).

1.1.2 Differentiable functions

If M and N are differentiable manifolds of dimensions m and n, respective-
ly, and f: M — Nis a given function, then we say that fis differentiable}
at x € X if the function

Fé \bof'd(ﬁ—l: ”2’""”2"

is differentiable for any charts (U,¢) of M and (V,y) of N where
X €U, f(x) € V. The function y o fo ¢ ~"is defined on ¢(f~ (V) N U) (see
Fig. 1.1). We say that fis differentiable if it is differentiable at each x € X.
Note that the definition of differentiability is independent of the choice of
the coordinates ¢, ¥, since if

Fajofag

is another expression for S with respect to the coordinates ¢, ¥, then the
function

oy o Fo(pod™)

is a restriction of F to an open subset of the domain of F which is differen-
tiable if and only if F is differentiable.
An injection f: M — N of a differentiable manifold M onto another

1 If M, N are analytic manifolds, [fis called analytic.



4 MATHEMATICAL APPARATUS
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Fig. 1.1 Local representations of functions

differentiable manifold N is called a diffeomorphism if f and f~' are
differentiable. In this case M and N are said to be diffeomorphic.

Examples

1. If R™, R" have their usual differentiable structures, then f:iR™—>R"is
differentiable if it is differentiable in the usual sense.

2. Let R have its usual differentiable structure defined by the identity chart
¢:R—>R,p(x)=x, and let R be the set R with the differentiable
structure defined by the single chart ¢: R —> R, ¢(x)= x>. Then the
identity map id: R— R is not a diffeomorphism since its inverse
id: R — R has the coordinate expression Id(x)2 ¢ o ido ¢ 1(x)=x3
which is not differentiable when x = 0. However, the map f=¢: R — R
is a diffeomorphism since the coordinate representations of S and its
inverse f~'=(.)'”? are both equal to the identity map id: R — R.

REMARK Example 2 shows that a topological space can carry two differen-
tiable structures which are not compatible, even though the resulting
differentiable manifolds are diffeomorphic. The question then arises as to
whether there exist truly different differentiable structures on R. In fact, it
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turns out that all differentiable structures on R lead to diffeomorphic
manifolds. Even more is true; if n # 4 then all differentiable structures on
R" are diffeomorphic. Milnor (1956) showed that there exists an ‘exotic’ dif-
ferentiable structure on the seven-sphere S’ (i.e. one which is not diffeomor-
phic to the standard structure). A theorem of Donaldson (1983) shows that
there exists an exotic structure on R*; see also Freed and Uhlenbeck (1984).

It is customary to denote the set of differentiable, real-valued functions
on a manifold M by C*(M) or % (M) and those real-valued functions
which are defined in a neighbourhood of a point p € M and are differen-
tiable at p by C*(p) or % (p). Note that & (M) (and ¥ (p)) are associative
algebras over R with the operations

(@f)(p) =af(p), a€R,peM
(f+8)p)=f(p)+ g(p), pEM
(fg)(p)=f(p)g(p), PEM,

for all f, ge F(M).

1.1.3 Submanifolds

Let M and N be differentiable manifolds of dimensions m and n and let
f: M — N be a differentiable mapping. Then we say that fis an immersion
if for each p € M there is a neighbourhood U of p in M and a chart (V, ¥)
containing f(p) in N such that ¢ £ y o f| U is a chart for M. The manifold
M is then said to be immersed in N. An injective immersion is called an
embedding. Since an immersion is clearly locally injective, it follows that
an immersion is a local embedding.

A subset M of a manifold N is called a submanifold if the canonical
injection i: M S N is an embedding, for a given differentiable structure on
M.

Examples

1. If M is an open subset of N, then M is a submanifold, and is called an
open submanifold. Charts on M are just the restrictions of charts on N
to M, and it is clear that the manifold dimensions of M and N are the
same.

2. Let R! and R? have their usual differentiable structures and let
fi: R' > R2 i=1,2,3 be the mappings shown (by their images in R?)
in Fig. 1.2. Then f; is an immersion and f; is an embedding, so that
f2(R") (with the differentiable structure induced from R') is a sub-
manifold of R2. Note, however, that the topology of f>(R') is induced
from R' and not that induced as a subspace of R?, so that any
R2-neighbourhood of p contains points in f>(U) and f>(V), where U is
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Fig. 1.2 Immersed submanifolds

a neighbourhood of f3 '(p) and V is a neighbourhood of o in R such
that UN V=0. f3: R' - R? is topologically an unstable trajectory of a
system with a limit cycle, and is an embedding.

Embedded submanifolds can be characterized as follows:

Theorem 1.1.1

A manifold M is an m-dimensional submanifold of the n-dimensional
manifold N if for all p € X, there exists a chart (V, ) of N with p € V such
that

(@ y(p)=0

(b) theset W= {geV:y" ! oy(g)=--=y"oy(q)=0} and the restric-
tions of y!,...,»™ to W form a chart of M with pe W. (Here,
(»', ..., y") are the coordinate functions.)

Moreover, if f: M — N is injective and differentiable, and for every
p € X there exists a chart (U, ¢) of p in M and a chart (V, y) of f(p) in
N such that the linear map

Do fod™ ) (p): R" - R"

is injective, then f(M) is a submanifold of N with the differentiable
structure which makes f: M — f(M) a diffeomorphism. ]

Using the implicit function theorem, it can be shown that if f: R” = R is
a differentiable function and M = f~'(0), then M has a uniquely deter-
mined differentiable structure making it an (n — 1)-dimensional sub-
manifold of R” if, for each p € M, (grad f)(p) # 0. This can be generalized
to functions f: M — N for manifolds M and N of dimensions m and n
(m>=n):

Theorem 1.1.2
If f: M— N is differentiable and g € N, then f~!(g) is a submanifold of
M of dimension (m — n) (or is empty) if for any p € f~'(g) there are charts



