- Software |
{ Conflgur‘atlon‘
Management |

An Investment |
in Product Integrity |

EDWARD H. BERSOFF |
VILAS D.HENDERSON |-
STANLEY G.SIEGEL

{

8163683

Software
Configuration

Management

An Investment
in Product Integrity

EDWARD H. BERSOFF
CTEC, Inc

VILAS D. HENDERSON
Desiderum, Inc

\ ¥, z)STANLEYG SIEGEL
CTEC, |

E8163683

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

Library of Congress Cataloging in Publication Data

BERSOFF, EDWARD H.
Software configuration management, an investment
in product integrity.
Bibliography: p. 352
Includes index.
1. Comp progr i il 2. Cc

programs— Verification. 1. Henderson, Vilas D.,
joint author. II. Siegel, Stanley G.; joint author.
II1. Title.

QA76.6.B473 658’ .054'25 79-26678
ISBN 0-13-821769-6

Editorial/production supervision and interior
design by Gary Samartino

Cover design by Edsal Enterprises, Inc.
Manufacturing buyer: Joyce Levatino

© 1980 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To

Carol
Susan
Rochelle

Jan

Bena
Gary
Deborah
Rachel

20U O O

oo

Product
integrity

Figure P-1

19 Software)%

N i S

~
N
N

\ 5 ﬁﬂ Control

PART II

Identification

Auditing

Status
accounting

e————
History
I
|

. Epilogue

What This Book Is About.

Preface

Does any of the following sound familiar or conjure up painful memories:

I thought the computer system I paid for was supposed to draw pie
charts—not draw charts of pi!”’

“‘Sir, before I hand in my resignation, I would like you to hear my side of
the story as to why the software we promised the customer two years ago
has not been delivered.”’

“What do you mean the money budgeted for this computer system
development has already been expended, and no software has been pro-
duced?’’

‘““Bob Bitbuster—the whiz programmer who left the company last week
—is the only guy who knows what this computer program is supposed to
do?”

“Does anybody know why we have the same subroutine called by three
different names?”’

This book is about discipline. It is about discipline that managers should apply
to software development. Why is such discipline needed? Quite simply, because the
software industry has traditionally behaved in an undisciplined manner—doing its
own thing. The industry has typically turned out products that have, among other
things,

Preface

Contained other than what was expected (usually less, rather than more);
Been delivered much later than scheduled;

Cost more than anticipated;

Been poorly designed;

Been poorly documented.

If you can empathize with any of the individuals quoted above, then you should
find it beneficial to read this book. If you have been exposed to the practices re-
ferred to above (even through hearsay), then you should find it beneficial to read this
book. In short, if you are now, or intend to be, a software seller, buyer, or user, then
you should find it beneficial to read this book.

Lest you think that you are not now or ever will be a software user, buyer, or
seller—keep in mind that the technological explosion of the 1970s in electronic com-
ponent miniaturization ushered in the era of personalized computing. Without too
much exaggeration, it can be asserted that nearly everyone is a potential software
seller, buyer, or user.

This book is about a discipline called software configuration management
(SCM). As the book’s subtitle suggests, the theme of the book is that an investment
in the discipline of SCM represents a step along the road to product integrity. The
objective of SCM is to assist the software seller in achieving product integrity and to
assist the software buyer and user in obtaining a product that has integrity.

In writing this book, we have adopted a textbook approach. We feel that this
approach is appropriate because, to our knowledge, a book that addresses the sub-
ject of SCM in depth has heretofore not been written. Many concepts may therefore
be new to the general readership. Consequently, these concepts will require rein-
forcement. We have found the standard textbook devices of detailed examples as
well as exercises to be solved by the reader to be effective vehicles for achieving this
reinforcement. The purpose of many of the exercises is to provoke classroom discus-
sion and debate; some of the exercises extend concepts introduced or touched upon
in the main text.

We asserted earlier that nearly everyone is a potential software user, buyer, or
seller. Therefore, our aim in this book is to appeal to a broad audience. To achieve
this aim, we have pursued the following course:

The style is expository to accommodate classroom use. However, we have
slanted the style toward the informal to avoid pedantry.

The text is reasonably self-contained to accommodate self-study. Complex ideas
and elaborate extensions of basic concepts are left for exercises.

To ease into the presentation of technical material, we begin each chapter except
the last with examples taken from everyday experience. We thus appeal to common-
ly understood notions to motivate the discussion of technical concepts.

Mathematical symbology is not used extensively. Other than a knowledge of
some concepts taught in high school algebra, a background in mathematics is neither

Preface

assumed nor required. However, for those of you with such a background, we have
included some material that should provoke your interest. This material, which may
be skipped without loss of continuity, has been placed in footnotes, exercises, and
(in Chapter 4) a separate section.

A knowledge of (or even exposure to) computer programming is neither as-
sumed nor required. Such knowledge may even be a disadvantage in some cases (those
of you with programming experience may be compelled to so some rethinking).
However, we have included material that does assume software development ex-
perience. In order not to disrupt continuity, this material has, for the most part,
been placed in footnotes and exercises.

We therefore believe that the material in this book should be accessible to in-
dividuals such as:

1. Undergraduate students in the computer science, management science,
and operations research disciplines (the material should be more than ade-
quate for a one-semester course).

2. System development managers and contract managers in industry and
government.

3. Computer system* designers, analysts, and programmers.
Software vendors.

5. Anybody who wants to learn something about software and the manage-
ment of its development.

This text is not a cookbook. It does not prescribe in detail the steps required to
perform SCM on a particular software development project. For this reason, this
book does not contain pages of blank forms that you can reproduce and fill in to ac-
complish SCM on a particular project. Rather, this book sets forth SCM principles
that you can apply to your particular needs. We supplement the presentation of
these principles with detailed examples so that you can see how to perform this ap-
plication. Even if we believed that it were possible to write an SCM cookbook, we
surmise that such a treatise would suppress creativity in software development
management.

A comment is.in order concerning our use of examples. To maintain continuity
of presentation, and to strengthen the credibility of the theoretical discussions, we
have threaded a case study throughout the final five chapters of the text. This case
study represents a composite of the authors’ software development experiences. It is
used to explicitly illustrate the utility of applying the discipline of SCM throughout

*Unless otherwise indicated in this book, the term computer system encompasses entities
ranging from pocket and desktop programmable calculators (such as the TI-59 or HP-41C) to
minicomputers (such as the PDP-11) to maxicomputers (such as the IBM/370 series or the
CRAY-1 array processor). The SCM discipline is applicable in some degree to computer
systems of any size.

xii

Preface

the entire software/system life cycle. We also explicitly illustrate some of the dif-
ficulties that typically result from not applying this discipline. In addition to the case
study, we have also incorporated other examples into the text that illustrate par-
ticular points of SCM methodology that could not be conveniently or adequately ad-
dressed in the case study. :

We have also made liberal use of figures and diagrams. We feel that pictures
help considerably in visualizing many of the SCM concepts that may be difficult to
grasp through the written word alone. Also, we feel that the text would be unduly
ponderous were it not liberally interspersed with figures.

The book is divided into two parts (see Figure P-1). Part I, entitled ‘“The Pur-
suit of Product Integrity’’ and consisting of the first three chapters, builds a case for
the need for SCM. Those of you having an interest in the software development pro-
cess should find these three chapters informative. Part II, entitled ‘“The Principles’’
and consisting of the remaining five chapters, presents and illustrates the principles
of SCM.

The following is an overview of the book’s eight chapters:

e In Chapter 1, we introduce the concept of software. Our definition is per-
haps more comprehensive than conventional definitions and is fundamental
to the proper understanding of the SCM problem. The similarities and dif-
ferences between software and other types of systems are discussed. In this
chapter, we also provide motivation for attempting to solve the SCM prob-
lem. The chapter concludes with the introduction of the functions of config-
uration management.

e In Chapter 2, we focus on the concept of system. We describe the life cycle
of a system. We indicate the relationship between the life cycle of a system
and the life cycle of the software components of this system. The life cycle
concept is used to introduce the fundamental SCM concept of baseline.
Management of the system life cycle is discussed in terms of this concept.

¢ In Chapter 3, we discuss the disciplines needed to attain and maintain prod-
uct integrity. We divide these disciplines into three groups—management,
“‘doing,’’ and product assurance. We indicate the role of SCM—a product
assurance discipline—vis-a-vis the role of other disciplines in the pursuit of
product integrity. To prepare for the detailed treatment of SCM in subse-
quent chapters, we introduce the notions of software design object and soft-
ware configuration item.

¢ In Chapter 4, we begin our detailed study of the SCM discipline. We exam-
ine the first of the four classical configuration management functions—con-
figuration identification—as it applies to a system consisting in part of soft-
ware. Compared to existing literature, our discussion of this function is
perhaps innovative. The concept of baseline introduced in Chapter 2 pro-
vides the basis for developing configuration identification techniques. A
generalized approach to labeling software configurations is presented.

Preface

Xiii

Through the case study, we illustrate how this generalized approach can be
tailored to specific project needs. To lay the groundwork for Chapter 5, the
concept of baseline change is introduced.

In Chapter 5, we examine the second classical configuration management
function—configuration control—as it applies to a system consisting in part
of software. We show how management of configuration changes is the key
to disciplining software life cycle evolution. For this purpose, we focus on
the concept of configuration control board. We introduce the concepts of
evolutionary change and revolutionary change. We discuss the documenta-
tion (i.e., forms) needed to support change processing. We also address the
subject of the ingredients of a configuration management plan. Again,
through the use of the case study and other specific examples, we illustrate
the application of configuration control in specific terms.

In Chapter 6, we examine the third classical configuration management
function—configuration auditing—as it applies to a system consisting in
part of software. Auditing is the ultimate payoff of applying the SCM dis-
cipline. Through the auditing function, the software seller is able to deter-
mine whether or not what the buyer/user asked him to build has indeed been
built, and the software buyer/user is able to determine whether what he is
paying for is what he asked the seller to build. Auditing checklists are pre-
sented for each of the baselines introduced in Chapter 2. Tools and tech-
niques for conducting SCM audits are described. We use the case study and
other specific examples to illustrate the accomplishment of the configura-
tion auditing function.

In Chapter 7, we examine the fourth and final classical configuration man-
agement function—configuration status accounting—as it applies to a sys-
tem consisting in part of software. We discuss the need for configuration
status accounting and discuss techniques for implementing this function.
The case study is used to illustrate specific applications of the configuration
status accounting function.

In the final chapter, we provide perspective to the concepts and principles
described and illustrated in the preceding chapters. We shift our attention
from the microscopic aspects of how each of the four SCM functions is ac-
complished to macroscopic considerations. We explore, using the case
study, the manner in which these four functions interact with one another.
We examine whether the application of SCM really results in a better prod-
uct. We offer some guidelines for determining how much discipline is
needed on a particular software project. We conclude the book by offering
some suggestions regarding how you may wish to apply the material in the
book to your work and other endeavors.

With the preceding as a guide, let us begin our pursuit of software product in-

Xiv

ACKNOWLEDGMENTS

Several organizations and individuals provided moral and/or physical support
for the development of this book. To CTEC, Inc. goes our appreciation for the
facilities without which this book could not have been produced. To the CTEC
technical staff goes our appreciation for stimulating ideas and constructive criticism.
We particularly wish to thank Marilee J. Layman and Dr. William L. Bryan. They
willingly set aside evenings and weekends to review the manuscript and galleys and
assist in the preparation of the index. To the CTEC administrative staff goes our ap-
preciation for their willingness to put up with our seemingly endless demands for
text revisions and our different colored pens. In particular, we wish to thank Martha
Begle for her diligent and tireless assistance during the preparation of the
manuscript.

To Marilynn Weidner, we owe a special debt of gratitude that can never be
repaid. Her assistance during all phases of this project has been extraordinary. She
has brought order to what at times was chaos and has been a source of strength dur-
ing our moments of despair.

To Paul Becker, we wish to express our appreciation for his guidance and en-
couragement. From this project’s inception, he enthusiastically supported our ef-
forts.

Finally, to our wives and families go special thanks. Their understanding of our
need to work early in the morning, late at night, and on weekends is appreciated.
Their moral support and willingness to let us do our thing was more than we prob-
ably deserved.

Falls Church, Virginia EDWARD H. BERSOFF
VILAS D. HENDERSON

STANLEY G. SIEGEL

8163683

Contents

Preface 5 ix

* Y

PART | The Pursuit of Product Integrity - v
Foe

Chapter1 The Problem of Software ' = - L 3

1-1 Introduction 3

1-2 The System in Perspective 6

1-3 Concept of Software 10

1-4 Software Development—Art or Science? 18
1-5 What Is SCM? 19

Exercises 22

Footnotes 25

Chapter2 Managing the System Development 29

2-1 Introduction 29

2-2 The System Life Cycle 41

2-3 Managing the System Life Cycle 46
2-4 Unfinished Business 49

Exercises 52

Footnotes 355

vi

Contents

Chapter 3 Attaining and Maintaining Product Integrity 57

PART 1l

3-1 The Requisites 57

3-2 Organizing for Product Integrity 61

3-3 Management’s Role in Attaining and Maintaining Product Integrity 66
3-4 Product Assurance—The Supporting Disciplines 72

3-5 The ““Doing’’ Disciplines 77

3-6 System Architectures for Attaining and Maintaining Product Integrity 82
3-7 And Now! 88

Exercises 90

Footnotes 93

The Principles

Chapter 4 Configuration ldentification 97

Chapter 5

Chapter 6

4-1 The Problem 97

4-2 The Notion of Software Configuration 107

4-3 Principles of Software Configuration Identification 1713

4-4 A Guided Tour through the Software Life Cycle from the Configuration
Identification Viewpoint 130

4-5 Software Configuration Identification Formalism 15/

4-6 Summary 157

Exercises 157

Footnotes 161

Configuration Control 172

5-1 The Problem 172

5-2 The Configuration Control Board 178

5-3 The “Forms’’ of Software Configuration Control 199

5-4 The Configuration Management Plan 208

5-5 The Configuration Control Tour through the Software Life Cycle 213
5-6 Summary 220

Exercises 220

Footnotes 223

Configuration Auditing 226

6-1 The Problem 226

6-2 Auditing Principles 237

6-3 Auditing Applied to the Case Study—A Guided Tour 255
6-4 Techniques and Tools 270

6-5 Summary 273

Exercises 273

Footnotes 278

Contents

Chapter 7 Configuration Status Accounting 284

7-1 The Problem 284

7-2 Principles of Configuration Status Accounting 289

7-3 Configuration Status Accounting Tours the Software Life Cycle 303
7-4 Summary 310

Exercises 310

Footnotes 312

Chapter 8 Epilogue 315

8-1 Where Have We Been? 315

8-2 SCM Function Interactions 318

8-3 What Does the Toll Really Buy? 331
8-4 How Much Discipline Is Enough? 336
8-5 Where Do You Go from Here? 340
8-6 A Final Thought 343

Exercises 344

Footnotes 349

Bibliography 352

Index 363

vii

The Pursuit
of Product Integrity

PART I

The Problem
of Software

1-1 INTRODUCTION

This book is about a management methodology
applicable to the development of systems comprised
partially or totally of software.'* This meth-
odology—or, more precisely, discipline—we call
software configuration management, or SCM.

The theme of this book is discipline—discipline
as it applies to the development of software prod-
ucts. Many of the ideas in this book are not
complex; in fact, they are almost alarmingly
simple! You may therefore ask: Why have we been
motivated to write a book about simple ideas? The
answer is probably more complex than some of the ideas. We will not dwell on all
the aspects of the answer, but we will offer some brief, partial replies to the ques-
tion. Some appreciation of why this book was written is, we feel, important to
becoming acclimated to its spirit.

We begin with a simple illustration. Let us consider what is involved in the
writing of a letter (say, a letter of apology from a president of a corporation to a ruf-
fled client). We have all written letters, so if we think about the processes involved,

*Footnotes to each chapter appear after the exercise section at the end of the
chapter.

